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Abstract
This paper explores the concept of Yakubovich oscilla-

tory behavior. The existing result on this topic has been
extended, and sufficient conditions for Yakubovich oscil-
latory behavior in nonlinear systems with bounded delay
have been established and proven. Estimates of the os-
cillation range for nonlinear dynamic systems are pro-
vided. To illustrate the theory, the oscillatory nonlinear
system with cubic nonlinearity and bounded delay has
been considered.
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1 Introduction
The concept of oscillation as a process with vary-

ing degrees of repeatability has undergone significant
changes throughout its existence. At the turn of the 19th
and 20th centuries, it became clear that linear models
of oscillations were not sufficient to describe new phe-
nomena and processes in physics and technology. This
required the development of the corresponding mathe-
matical apparatus, namely the theory of nonlinear os-
cillations, the foundations of which were laid in the
works of A. Poincaré, B. Van der Pol, A. A. Andronov,
N. M. Krylov and N. N. Bogolyubov [Bogoliubov and
Mitropolsky, 1961; Andronov et al., 1966; Leonov et al.,
1996].

Based on these works many definitions of the concept
of ”oscillation” were introduced [Fradkov and Pogrom-
sky, 1998; Leonov et al., 1996]. Oscillation can be un-
derstood as the behavior of a function that does not tend
towards zero or diverge to −∞ or +∞. In other words,
this function does not have a limit. The definition of os-

cillation should be applicable to a wide range of systems
and provide a practically useful approach to study it. The
most general definition of oscillation was proposed by
V. V. Nemytskyy [Nemytskii, 1961], but effective crite-
ria for determining whether a function oscillates in this
sense have not yet been established. V. A. Yakubovich
developed an effective and useful concept for studying
oscillatory behavior [Yakubovich, 1973; Tomberg and
Yakubovich, 1989]. This criterion is applicable to Lurie-
type systems, which can be divided into linear and non-
linear parts. However, it does not provide estimates of
the oscillation amplitude. D. V. Efimov and A. L. Frad-
kov extended the analysis of oscillations and developed a
method for estimating their amplitude [Efimov and Frad-
kov, 2006; Efimov and Fradkov, 2009]. Since distur-
bance is an integral part of the functioning of any ob-
jects in the modern world, in this work, the effective re-
sults obtained by D. V. Efimov and A. L. Fradkov have
been generalized to the case of nonlinear systems with
disturbance. Oscillation is one of the most widespread
regimes of system behavior, therefore there are many
works devoted to studying and controlling it [Fradkov
and Pogromsky, 1998; Andrievsky and Guzenko, 2014;
Plotnikov and Andrievsky, 2013; Blekhman, 2023].

The rest of the paper is organized as follows. Section 2
recalls the concept of oscillation. In Sec. 3 the condi-
tions for oscillatory behavior in a nonlinear system with
a bounded disturbance are obtained. Section 4 demon-
strates the application of the obtained results to a non-
linear system, and Sec. 5 presents the simulation results.
Finally, Sec. 6 concludes the paper.

Notation. Throughout the paper Rn denotes the n di-
mensional real Euclidean space with vector norm | · |;
notation z = col(x, y) means that z is a vector of two
components x, y.
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2 Oscillatority
Consider a general model of a nonlinear dynamical

system:

ẋ = f(x), (1)

where x ∈ Rn is a state vector, f : Rn → Rn is a
locally Lipschitz continuous function.

Remind definition about oscillatority for nonlinear
dynamical system introduced by V. A. Yakubovich
[Yakubovich, 1973; Tomberg and Yakubovich, 1989]
and modified by D. V. Efimov and A. L. Fradkov [Efi-
mov and Fradkov, 2006; Efimov and Fradkov, 2009].

Definition 1. The solution x(x0, t) of the system (1)
with initial condition x0 ∈ Rn is called a [α, β]-
oscillation with respect to the output y = η(x), where
η : Rn → R is a continuous monotone function, if the
solution is defined for all t ≥ 0 and

lim
t→+∞

y(t) = α; lim
t→+∞

y(t) = β;

−∞ < α < β < +∞.

The solution x(x0, t) of the system (1) with initial con-
dition x0 ∈ Rn is called oscillating if there exists an
output y and constants α, β such that it is a [α, β]-
oscillation with respect to the output y.

The system (1) is called oscillatory if for almost all
initial conditions x0 ∈ Rn its solutions x(x0, t) are os-
cillating.

If η is a vector function, then the system (1) is called
oscillatory if at least one component of the output is os-
cillating. It should be noted that a nonlinear system has
a non-empty set of equilibrium points, for which the so-
lutions are not oscillations. Therefore, the term ”almost
all initial conditions” is added to the definition. The con-
stants α and β are exact asymptotic bounds for the output
y. Thus, the oscillatory property for system (1) indicates
that the auxiliary output y = η(x) is ultimately bounded
and locally unstable. Recall the definition of ultimate
boundedness [Pogromsky and Nijmeijer, 2001; Willems,
1972].

Definition 2. The solution x(x0, t) of the system (1) is
called ultimatelly bounded if there exist positive con-
stants ∆0 and ∆ such that for all initial conditions
x0 ∈ Bx0

= {x ∈ Rn : |x| ≤ ∆0} the following
inequality is fulfilled:

|x(x0, t)| ≤ ∆, t ≥ t∗. (2)

In general, the property of ultimate boundedness can
be established under Lyapunov-like conditions [Khalil,
2002] or under the condition of semi-passivity [Pogrom-
sky and Nijmeijer, 2001]. The property of local in-
stability can be established using a linearization ap-
proach [Yakubovich, 1973; Efimov and Fradkov, 2006]
or Lyapunov-like conditions [Efimov and Fradkov, 2006;
Efimov and Fradkov, 2009].

3 Main Result
Consider a model of a nonlinear dynamical system un-

der bounded disturbance:

ẋ = f(x) + ξ, (3)

where x ∈ Rn is a state vector, ξ = ξ(t) ∈ Rn is a
bounded differentiable in t disturbance, i.e. ∃ d > 0 :
|ξ| < d, f : Rn → Rn is a locally Lipschitz continuous
function.

The problem is to find conditions for system (3) to be
oscillatory. Before presenting the formulation of the cri-
terion, recall the definition of a K∞-function. A contin-
uous function v : R+ → R+ belongs to class K if it is
strictly increasing and v(0) = 0. It belongs to K∞ class
if it belongs to class K and is radially unbounded.

Theorem 1. Let the solutions of the system (3) with a
bounded disturbance ξ, i.e. |ξ| < d, be ultimately
bounded. Let there exists a continuous and locally Lip-
shitz Lyapuynov function V : Rn → R+ satisfying the
inequalities

v1(|x|) ≤ V (x) ≤ v2(|x|),

for all x ∈ Rn, where v1, v2 ∈ K∞. Furthermore, let
the derivative of V with respect to the system (3) satisfy
the inequalities

V̇ (x) =
∂V

∂x
f(x) > 0,

for X1 < |x| < X2, where 0 < X1 < X2 < ∞. If the
initial conditions of the system (3) do not belong to the
set {x : |x| ≤ X1}, and the set

Ω = {x : |x| > v−1
2 ◦ v1(X2)}

does not contain locally stable equilibrium points of the
system (3), then the system (3) is oscillatory with respect
to the output |x|, and

|x| > v−1
2 ◦ v1(X2).

Proof. Analyzing the properties of the system (3), con-
sider the initial conditions of the state vector from the
set {x : |x| > X1}. The ultimate boundedness of the
solutions of the system (1) follows from the assumption.
This means that there exists a positive constant ∆ such
that (2) is fulfilled. Since these facts and also V̇ (t) > 0
for X1 < |x| < X2, the Lyapunov function V (t) has an
upper bound and assymptoticaly satisifes the inequality
V (t) > v1(X2), where |x(t)| > v−1

2 ◦ v1(X2).
Due to the initial conditions of the state vector being

chosen from the set {x : |x| > X1} and the bound-
edness of the trajectory x(t), t ≥ 0, it has a non-empty
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Figure 1. Ultimate boundedness and local instability of the solution
x(t) of the system (1) with a bounded disturbance ξ.

compact and closed ω-limit set contained in the set Ω.
By the assumption, the set Ω does not contain stable
equilibrium points of the system (3). Therefore, the non-
empty compact and closed ω-limit set of trajectory x(t)
also does not contain such invariant subsets. Then, this
solution is [α;β]-oscillation with respect to the output |ξ|
for v−1

2 ◦ v1(X2) < α < β < ∆, which means the oscil-
latority of the system (3). The theorem has been proven.

Corollary 1. Since |xi| ≤ |x| ∀ xi, i = 1, . . . , n, then
v−1
2 ◦ v1(X2) is the lower bound of the oscillation am-

plitude of the modulus of the state coordinate |xi|.

The graphical proof of Theorem 1 is depicted in Fig. 1.
Initial conditions x(0) should not be chosen within the
ball of radius X1 because the value of the Lyapunov
function derivative V̇ (t) can be both positive and neg-
ative.

If the initial conditions x(0) of the system (1) belong
to the ring of radii X1 and X2, then the trajectory of the
solution tends to the ring with radii X2 and ∆ (dashed
area in Fig. 1) because of the positiveness of the Lya-
punov function derivative in this area V̇ (t) > 0 for
X1 < |x| < X2.

The same is valid for the area |x| > ∆ because of the
ultimate boundedness of the solution. The solution x(t)
asymptotically oscillates in the ring of radii X2 and ∆,
because there are no stable equilibrium points.

4 Example
Let’s take a look at a nonlinear system with a bounded

disturbance ξ, i.e. 0 < |ξ| < d:

ẋ1 = x1 − x3
1 + x2 + ξ,

ẋ2 = x2 − x3
2 − x1.

(4)

One can check that this system has the only equilibrium
point (0; 0) for ξ ≡ 0. To prove the local instability of
the equilibrium point, consider the following Lyapunov
function:

V (x) =
1

2

(
x2
1 + x2

2

)
, (5)

where x = col(x1, x2) is a state vector. Find its deriva-
tive with respect to the system (4):

V̇ (x) = −x1(x
3
1 − x1 − ξ)− x2(x

3
2 − x2).

Express the variable x2 in terms of x1 as x2 = γx1 for
x1 ≥ x2 or x1 = γx2 otherwise, where γ ∈ [−1; 1] is a
constant. Then, V̇ can be presented as:

V̇ (x) = −(1 + γ4)x4
1 + (1 + γ2)x2

1 + ξx1,

for x1 ≥ x2,

V̇ (x) = −(1 + γ4)x4
2 + (1 + γ2)x2

2 + γξx2,

for x1 < x2.

(6)

To find the area of positive values of V̇ , one needs to
calculate the roots of the corresponding cubic equations
(6):

x3
1 −

1 + γ2

1 + γ4
x1 −

ξ

1 + γ4
= 0,

x3
2 −

1 + γ2

1 + γ4
x2 −

γξ

1 + γ4
= 0.

One should find the range of values for x1 and x2, for
which V̇ (t) > 0. This is possible if and only if the cubic
equations have three roots. In turn, this is fulfilled if and
only if:

ξ2

4(1 + γ4)2
− (1 + γ2)3

27(1 + γ4)3
< 0, for x1 ≥ x2,

γ2ξ2

4(1 + γ4)2
− (1 + γ2)3

27(1 + γ4)3
< 0, for x1 < x2.

Both of these conditions are fulfilled for

|ξ| < 2
√
3

9
,

To find the narrowest range of values for x1 and x2, for
which V̇ (t) > 0, one needs to choose γ = 0 for the first
inequality and |γ| = 1 for the second one.

In this case, using trigonometric Vieta’s formula, one
can find the roots of the cubic equation:

x∗
1 =

2
√
3

3
cos

[
1

3
arccos

(
3
√
3ξ

2

)
+

2πk

3

]
,

x∗
2 =

2
√
3

3
cos

[
1

3
arccos

(
3
√
3ξ

4

)
+

2πk

3

]
,

(7)
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Figure 2. Dynamics of the system (4) state vector component x1

with a bounded disturbance (9). Initial conditions: x1(0) = 0.5,
x2(0) = 0.

for k = 0, 1, 2.
Analyzing the roots, and noting that V̇ → −∞ as

t → ±∞, one can find the area |x| ∈ [X1;X2] where
V̇ takes positive values:

X1 = −2
√
3

3
cos

[
1

3
arccos

(
3
√
3|ξ|
2

)
− 2π

3

]
,

X2 = −2
√
3

3
cos

[
1

3
arccos

(
3
√
3|ξ|
2

)
− 4π

3

]
.

To obtain conditions that are independent of ξ, one can
use the assumption that |ξ| < d for the boundedness of
the disturbance:

X1 = −2
√
3

3
cos

[
1

3
arccos

(
3
√
3d

2

)
− 2π

3

]
, (8a)

X2 = −2
√
3

3
cos

[
1

3
arccos

(
3
√
3d

2

)
− 4π

3

]
. (8b)

The function V̇ is strictly positive for all
{x : |x| ∈ (X1;X2)}.

The ultimate boundedness of the state x of the system
(4) directly follows from the same Lyapunov function
(5). Thus, using Theorem 1, the following result can be
obtained.

Theorem 2. Let the initial conditions of the system (4)
with a bounded disturbance ξ , i.e. |ξ| ≤ d < 2

√
3/9,

not belong to the set |x| < X1. Then, the system (4) is
oscillatory with respect to the output |x|, and the ampli-
tude of oscillation of the components of the state vector x
is greater than X2. The values of X1 and X2 are defined
by (8a) and (8b), respectively.

5 Simulation
Let us consider the system (4) with the following dis-

turbance for simulation:

ξ(t) =
1

3
sin(100t), (9)

which satisfies the conditions of Theorem 2. The upper
bound of the modulus of this disturbance d is equal to
1/3. Thus, the values of X1 and X2 can be calculated
using formulas (8a) and (8b), respectively:

X1 ∼ 0.3949, X2 ∼ 0.7422.

Initial conditions are chosen as follows: x1(0) = 0.5,
x2(0) = 0, which also satisfy the conditions of Theo-
rem 2.

Figure 2 presents the results of simulation. The dy-
namics of the state vector component x1(t) is marked by
red color, while the estimate on the oscillation amplitude
X2 is marked by blue color. One can see that the solution
is oscillating, which illustrates the results of Theorem 2.

6 Conclusion
This paper examines the property of Yakubovich os-

cillatority. The previous result on this topic was gener-
alized, and sufficient conditions for Yakubovich oscilla-
tority in nonlinear systems with bounded delay were for-
mulated and proven. Estimates of the range of oscilla-
tions for nonlinear dynamic systems are provided. As an
example, the oscillatory nonlinear system with bounded
delay has been considered.
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