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Abstract
Time-delayed systems are crucial in many fields of

Physics and Engineering. One paradigmatic exam-
ple of time-delayed system is the well-known Mackey-
Glass (MG) equation, which models physiological pro-
cesses, mainly respiratory and hematopoietic (i.e. for-
mation of blood cellular components) diseases. In this
presentation, multistability in the long term dynamics
of the MG delayed model is analyzed by using a re-
cently proposed electronic circuit capable of control-
ling the initial conditions. New approaches for both the
nonlinear function and the delay block of the circuit
are made. In practice, in spite of using a finite set of
capacitors, an excellent agreement between the exper-
imental observations and the numerical simulations is
manifested. In the continuous limit, the equations of
the circuits exactly corresponds to the MG model. The
dynamics of the system exhibits a remarkable richness
and as the delay is increased different periodic or ape-
riodic solutions appear. The system’s phase-space is
explored by varying the parameter values of different
families of initial functions. In particular we consider
here families of random-phase sinusoidal functions. By
means of a symbolic method aimed at classifying solu-
tions, we confirm the existence of abundant periodic
solutions that have the same period and the same quan-
tity of maximums but a different alternation of peaks of
dissimilar amplitudes.
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1 Introduction
Chaotic systems are characterized by disorder and un-

predictable behavior. The discovery of strange attrac-
tors [Ruelle and Takens, 1971], in the 1970s, revealed
the existence of certain regularities in the phase space
of chaotic systems. Nonlinear systems often display
multistability, that is, the coexistence of different at-
tractors for the same set of parameters. From observed
noisy time-series that display similar oscillatory pat-
terns, identifying and distinguishing different coexist-
ing attractors is a challenging task, in particular when
noise induces switching among different attractors. Re-
cently, the phenomenon of extreme multistability has
been predicted numerically in systems of coupled os-
cillators [Hens et al., 2012] and experimental obser-
vations in a system of two coupled Rossler-like oscil-
lators were found to be consistent with the numerical
predictions: by constructing an electronic circuit rep-
resenting the system, Patel et al [Patel et al., 2014]
demonstrated a controlled switching to different attrac-
tor states through a change in initial conditions only,
keeping fixed the system’s parameters. While in most
multi-stable systems chaotic attractors are rare [Feudel
and Grebogi, 1997], systems with time delays are an
exception to this rule. A time-delay renders the phase
space of a system infinite-dimensional, as one needs
to specify, as initial condition, the value of a function,
F0, over the time interval (-τ ,0), with τ being the delay
time. This initial condition is referred to as the initial
function (IF).
One paradigmatic example of delayed system is that

proposed by Mackey and Glass [Mackey and Glass,
1977] dealing with physiological processes, mainly
respiratory and hematopoietic (i.e. formation of blood



cellular components) diseases. In effect, in the pro-
duction of blood cells is a considerable delay between
the initiation of cellular production in the bone nar-
row and the release into the blood. Generally, in these
processes, the evolution of the system at a given time
not only depends on the state of the system at the cur-
rent time but also on the state of the system at previous
times.
In their pioneering paper, Mackey and Glass (MG)

showed that a variety of physiological systems can
be adequately described in terms of simple nonlinear
delay-differential equations. The model proposed by
MG exhibits a wide range of behaviors including pe-
riodic and chaotic solutions. The importance of the
MG model lies in the fact that the onset of some dis-
eases are associated with alterations in the periodic-
ity of certain physiological variables, for example, ir-
regular breathing patterns or fluctuations in peripheral
blood cell counts [De Menezes and Dos Santos, 2000].
The dynamics of processes involving time delays, as

those studied by MG, is far more complex than that of
non-delayed, i.e. instantaneous, systems. Actually, if
the dynamics of a system at time t depends on the state
of the system at a previous time t − τ , the informa-
tion needed to predict the evolution is contained in the
entire interval (t − τ, t). Thus, the evolution of a de-
layed system depends on infinite previous values of the
variables. Mathematically, delayed systems are mod-
elled in terms of delayed differential equations (DDEs)
and one single DDE is equivalent to infinite ordinary
differential equations (ODEs). Due to their infinite di-
mensionality, the accuracy of numerical simulations of
DDEs is specially delicate. In practice, this problem
is avoided considering large transients. However, there
persist doubts about the stability and accuracy of the
methods used to numerically integrate DDEs.
Thank to its richness in behaviors, the Mackey-Glass

model has acquired relevance of its own [Junges and
Gallas, 2012; Sano et al., 2007; Wan and Wei, 2009].
One frequent application is to use the MG model as
a simple way to generate a high-dimensional chaotic
signal (see for example [Grassberger and Procaccia,
1983]) which can be helpful to characterize strange
attractors using the Kolmogorov entropy for instance
and, at the end, as a way to distinguish between de-
terministic chaos and random noise. Other applica-
tion could be the employment of the output of MG
model to check the effectiveness of a control or sta-
bilization scheme [Namajūnas et al., 1995]. MG model
was also proposed in the context of forecasting chaotic
data [Farmer and Sidorowich, 1987], or nonlinear esti-
mation problems [Wan and Van Der Merwe, 2000].
Recently, a novel electronic circuit has been proposed

a highly precise implementation of the Mackey-Glass
delay differential equation [Amil et al., 2015a]. Un-
der this approach, the discrete equations governing the
dynamics of the circuit are exact, in spite of the fact
that in the electronic circuit the infinite phase space of
the MG system is discretized via a finite set of values.

Using this experimental setup [Amil et al., 2015b], the
system’s phase-space was explored by varying the pa-
rameter values of two families of initial functions. It
is shown that the evolution equation of the electronic
circuit, in the continuous limit, exactly corresponds to
the MG model. In practice, when using a finite set of
capacitors, an excellent agreement between the exper-
imental observations and the numerical simulations is
manifested. As the delay is increased different periodic
or aperiodic solutions appear. Abundant periodic solu-
tions that have the same period but a different alterna-
tion of peaks of dissimilar amplitudes are observed and
classified. As the parameter space of the initial func-
tions is infinite dimensional and it is not possible to
explore it completely, it is natural to consider pseudo-
random initial functions. Here, we extend the previous
studies to the case in which the IFs presents a random
phase. We found a remarkable richness of structures in
the parameter space.

2 The exactly integrable discrete model
The original version of the Mackey-Glass delay-

differential equation, is [Mackey and Glass, 1977]

dP

dt
=

β0ΘnPτ
Θn + Pnτ

− γP (1)

where P is the density of mature circulating white
blood cells, τ is the delay time and Pτ = P (t−τ). The
parameters Θ and β0 and the exponent n are related to
the production of white blood cells while γ represents
the decay rate.
The number of parameters can be reduced by re-

scaling the variables x = P/θ and t′ = tγ. After the
re-scaling, a simplified equation for x (t′) for the MG
model is obtained

dx

dt′
= α

xΓ

1 + xnΓ
− x (2)

where Γ = γτ is the normalized delay time, α = β0/γ,
and xΓ = x(t′ − Γ).
The electronic implementation was divided in two

main parts: the delay block, which presents only a time
shift between its input and its output; and the func-
tion block, which implements the nonlinear term of the
equation. The complete circuit looks as in Fig. 1. In
this scheme the function block implements the produc-
tion term in the Eq. 2 without delay

f (v) = β
v

θn + vn
, (3)

and the delay block approximates the transfer function:

vout (t) = vin (t− τ) . (4)



Assuming ideal behavior of both blocks, the equation
for the potential at the capacitor terminals is given by

dvc (t)

dt
=

1

RC
[f (vc (t− τ))− vc (t)] (5)

which can be identified with Eq. 2 by setting t′ =
t/RC, x = vc/θ, Γ = τ/RC, and α = β/θn.

Figure 1. Block schematic of the circuit.

The purpose of the delay block is to copy the input to
the output after some time delay. The implementation
of this block with analog electronic is possible using a
Bucket Brigade Device (BBD), which is a discrete-time
analog device. Internally it consists of an array of N
capacitors in which the signal is moved along one step
at each clock cycle. In our implementation we used the
integrated circuits MN3011 and MN3101 as BBD and
clock signal generator respectively.
In this approach to implement the time delay approx-

imates the desired transfer function given, in this case
by Eq. 4, by sampling the input signal and outputting
their samples N clock periods later. The effective
transfer equation read as

vout (t) = gdvin

(
Ts

⌊
t

Ts
−N + 1

⌋)
+ Vd (6)

where Ts, gd and Vd stand, respectively, for the
sampling period, gain and offset voltage introduced
by the BBD. In the MN3011 the sampling period
can vary between 5µs and 50µs and N can be se-
lected among the values provided by the manufacturer
(396, 662, 1194, 1726, 2790, 3328). The accuracy of
the implementation is reported in [Amil et al., 2015a]
where several input and output signals are plotted.
Since the delay block we used approximates an ideal

delay, the effective equation of the implemented circuit
will also approximate the original Mackey-Glass equa-
tion.
The output of the delay block remains constant in each

clock period, so it seems natural to solve Eq. 6 in steps.
Let us solve it, then, for jTs ≤ t < (j + 1)Ts and let
vi = vc (iTs), then

dvc
dt

(t) =
1

RC
[f (vj−N+1)− vc] . (7)

Figure 2. Two examples of temporal evolution of the system vari-
able simulated using the discrete scheme.

Since f (vn−N+1) is constant, this equation can be
readily solved, the solution knowing the value of vc in
t = jTs is

vc (t) = (vj − f (vj−N+1)) e
nTs−t

RC + f (vj−N+1) .
(8)

Setting t = (j + 1)Ts and substituting the expression
for f(v) given in Eq. 3 it results

vj+1 = vje
−Ts
RC + (1− e

−Ts
RC )β

vj−N+1

θn + vnj−N+1

. (9)

This discrete time effective equation approaches to
the original continuous time equation, Eq. 5, when N
grows to infinity and the delay time τ = NTs is kept
constant.

3 Results
In Figs. 2 and 3, several examples, both empirical and

numerical, time-traces are shown. In these figures, the
parameter values of the electronic circuit or the numer-
ical simulations are kept constant while only the ini-
tial conditions are varied. Looking at these solutions
we observe different sequence of maxima with differ-
ent amplitudes.
As it is shown in [Amil et al., 2015b], multistabil-

ity is manifested in a wide range of parameters. Here
we focus on how do the different, periodic or chaotic,
solutions appear as a function of the IF. However, as
the parameter space defining the IFs is infinite dimen-
sional we consider pseudo-random IFs. the influence
of the initial conditions. In order to identify parame-
ter regions where multi-stability occurs, we developed
an algorithm for time-series analysis that allows to un-
ambiguously distinguish similar waveforms. This anal-
ysis algorithm is based in a symbolic representation
of a time-series, and allows to label the different pe-
riodic solutions. Two symbols were used, which cor-
respond to highest peaks, and to 2nd highest peaks.
Once the symbolic string was generated, the algo-



Figure 3. Comparison between simulations using the discretized
solution (left column) and experimental results obtained from the
electronic circuit (right column). The top and bottom rows display
coexisting solutions obtained from different initial functions. The
parameter values are: n = 4, α = 4.9, Γ = τ/RC = 15.7
andN = 396

rithm searched for periodicity, and if found, the time-
series was labelled with the symbolic string, written in
a unique way under cyclic permutations. For exam-
ple, the symbolic strings AAABBBAAABBB and
BBBAAABBBAAA both represent the same peri-
odic solution, which has three consecutive high max-
ima followed by three consecutive smaller maxima.
This way of labelling different solutions allows to dis-
tinguish among solutions with the same number of
peaks per period. The algorithm can be extended to
analyze more complex waveforms.
To investigate multi-stability one needs to consider

different initial functions, v(t − τ) = F0(t) with t ∈
(−τ, 0). Here we consider a family with two parame-
ters ωsin and ωcos given by pseudo-random sinusoidal
functions

F0 = 2 + sin(ωsin2πt/τ) + cos(ωcos2πt/τ). (10)

Let us proceed as follows, for each pair of values, ωsin
and ωcos, a transient time is neglected (about 5000τ in
the simulations and 1000τ in the experiments) and time
series of length 200τ (simulations) or 100τ (experi-
ments) are recorded. Their periodicity is analyzed with
the symbolic algorithm and the solutions are plotted in
the ωsin and ωcos space. If the MG system is only two-
dimensional these plots would identify the basins of
attraction of the different solutions; however, the MG
system is a delayed system and thus, these plots only
classify the different solutions obtained in terms of the
two parameters that determine the initial function.
In Fig. 4, two histograms, for experimental and sim-

ulations results are shown indicating the abundance of
solution in the parameter space of the initial function.
It is clear that both experimental and numerical exper-
iments exhibit similar frequency of appearance of the
different solutions.

Figure 4. Histograms showing the abundance of solutions given in
Fig. 2 in experimental and simulations (discrete time) results. The
parameter values are: n = 4, α = 4.9, Γ = τ/RC = 15.7
andN = 396.

Figure 5. Map of parameters (ωsin and ωcos) that define the ini-
tial function given by Eq. (10)], which evolve to a solutions with 2
(blue) or 7 (green) maxima per period. The parameter values are as
in Fig. 4

In Fig. 5-7 the organization of the solutions in the pa-
rameter space of the initial functions is depicted. The
color code represent the asymptotic solution obtained
as a function of the parameters that define the initial
function. The simulation presented corresponds to F0

given by Eq. 10 and the parameters of the MG model
and of the electronic circuit are as in Figs. 3). In these
figures it is evidenced the coexistence of periodic and
aperiodic solutions in a wide region of the parameter
space. Therefore, our study indicates that, at least for
the model parameters considered here, the electronic
circuit reproduces the main features of the MG system
(the shape of the waveforms, the bifurcation diagrams,
and the maps of bistable and multistable solutions) and
thus, it could be used to investigate other issues, for ex-
ample, noise-induced switching, or how multi-stability
affects synchronization.



Figure 6. Map of parameters (ωsin and ωsin) that define the ini-
tial function given by Eq. (10)], which evolve to different periodic
solutions (color) or a chaotic solution (black). The parameter values
are: n = 8, α = 8, andN = 396.

Figure 7. Zoom of the parameter space shown in Fig. 6.

4 Conclusion
Using the electronic implementation proposed in

[Amil et al., 2015a], the initial condition space of the
Mackey-Glass model studied in [Amil et al., 2015b]
was further explored. Using the discrete-time equa-
tion that approximates the exact solutions of the MG
model and in particular, extended to random-phase ini-
tial functions. The maps of initial conditions that re-
sult in different periodic solutions were found to ex-
hibit complex structures, which are not uncommon in
delayed systems [Shrimali et al., 2008]. In significant
parameter regions, different periodic or aperiodic solu-
tions, but with similar waveforms, coexist. These so-
lutions, exhibiting the alternation of peaks of different
amplitudes, can be classified distinguished by means of
a symbolic algorithm. A relevant consequence is that,
in contrast to other systems in which it is sufficient to
count the number of peaks per period (see for example
[Cabeza et al., 2013; Freire et al., 2013; Freire et al.,
2014]), here it is necessary to consider the ordering of
the peaks to identify the solutions.
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