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Lomas 4a Sección C.P. 78216,

San Luis Potosı́, S. L. P., México.
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Abstract
We investigate the effect of growth mechanisms on the

synchronizability of dynamical networks. Unlike pre-
vious works, where synchronization is investigated for
progressively larger fixed number of nodes coupled in
a given topology, e.g. in small-world or scale-free net-
work models. We consider the effect of adding new
nodes to an existing synchronized dynamical network
using different growth algorithms. Our results show
that an algorithm that combines a version of prefer-
ential attachment mechanism with random bridge con-
nections enhances the synchronizability of the resulting
network by providing a compact eigenvalue spectrum
to the resulting network. We illustrate our results with
numerical simulations.
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1 Introduction
A network is a set of entities, called nodes, that in-

teract through connections, called edges. In particu-
lar, if the pattern of connections between nodes is not
trivial the network is called structurally complex, or
simply, a complex network [Newman (2010)]. The
study of networks has focus mainly on the structural
aspects where nodes and edges are assumed to be void
of dynamics. In this way, one can use mathematical
tools like graph and probability theories to determine
key features of the network structure. In this context,
it has been observed that real-world networks share
different structural features such as the now famous
small-world (SW) and scale-free (SF) effects [Wang
and Chen (2003)]. Prominent examples of networks
that display these structural features are the Internet,
metabolic networks, social network, etc. However, it’s
well-known that for many real-world networks, nodes

are not just static entities. In fact, the states of their
nodes change over time. The concept of complex
dynamical network naturally arises by considering a
network with complex structural topology where each
node is a dynamical system. In recent years, signifi-
cant results have been obtain in regards to the stabil-
ity of collective behaviors in complex dynamical net-
works [Boccaletti et al. (2006) ; Wu (2007); Arenas
et al.(2008); Barajas-Ramı́rez (2012)]. These investi-
gations have establish the well-known criteria for net-
work synchronization, like the Master Stability Func-
tion (MSF) [Pecora and Caroll (1998)] and the so-
calledλ2 criterion [Li (2005)], which highlight the cru-
cial influence of the network structure on the stability
of its synchronized dynamics.
Network synchronizability is understood as how eas-

ily the synchronized behavior emergences as a stable
solution of the network dynamics. In basic terms,
the synchronizability of a network is determined by
the structural features of the network interconnections
[Pecora and Caroll (1998)]. The stability of the syn-
chronized behavior depends on two factors: the node
dynamics and the eigenspectrum of the network cou-
pling matrix. Recent investigations have related the
structural features of the network, including average
distance, degree distribution and betweeness central-
ity, to the network synchronizability [Chen and Duan
(2008); Zhao et al. (2007)]. However, these results
do not consider other aspects of the evolution that are
present in real-world networks, like the growth mech-
anisms beyond the addition of one or two extra links
to the current network structure and always with the
same number of nodes. A complementary question di-
rectly follows: how the network synchronizability is
affected by the structural evolution of the network? In
this contribution a step is taken in this direction, we in-
vestigate how the choice of growth mechanisms can en-
hance the synchronizability of the network. In previous
works, Wang and Chen analyzed the stability of syn-



chronization on small-world and scale-free networks
with different number of nodes, showing that larger
networks coupled with a small-world connectivity have
better synchronizability, in the sense that a smaller cou-
pling strength is required to achieve synchronization,
than nearest neighbors networks of similar size. On
the other hand, synchronizability in scale-free networks
is relatively independent from the number of nodes in
the network in [Wang and Chen (2002a); Wang and
Chen (2002b)]. In regards to the synchronizability
of growing networks, Fat et al. investigated the ef-
fects of using alternative versions of preferential attach-
ment which optimize the criteria for synchronization
as the network growths, their synchronous preferential
attachment mechanism results on networks with im-
proved synchronizability [Fan and Wang (2005); Fan
et al. (2005)]. However, as the network retains pre-
dominantly scale-free in structure, its synchronizability
is basically independent of the network growth. De-
spite these results, many aspects of the evolution of
real-world networks have are not taken into account by
these works. In particular, situations such as the ad-
dition of multiple nodes and rewiring of the network
connection topology have not being considered.

In this contribution, we propose a growth algorithm
that inherits the basic mechanism of the BA model, the
preferential attachment, to add nodes to an existing net-
work, and complement the network growth algorithm
by adding a small number of links uniformly at random
between the nodes already in the network. It should be
noted that unlike the previous works, where synchro-
nizability is analyzed for networks constructed up to a
fixed number of nodes using a given construction al-
gorithm, we investigate the effect on adding nodes and
links to an existing network which is already synchro-
nized. This is a subtle but significant difference, in-
stead of changing the size of the network and effec-
tively growing it from zero, we add nodes to an already
constructed network, we consider this to be a realis-
tic situation for network growth, where an initially de-
signed network is augmented and improved in order to
include new elements or provide services for a larger
population.

The rest of the paper is organized as follows: Some
necessary concepts and definitions required for the pre-
sentation of our results are given in Section 2. In Sec-
tion 3, the growth process is described as a transfor-
mation operator with two processes. We illustrate the
effects of our alternative growth algorithm on the syn-
chronizability in Section 4. Finally, in Section 5, the
contribution is concluded with some closing remarks.

2 Some Necessary Basic Concepts

Consider a network ofN linearly and diffusively cou-
pled identicaln-dimensional dynamical systems de-

scribed by the following equation:

ẋi = f(xi) + γ

N
∑

j=1

cijxj , with i = 1, 2, ..., N (1)

wherexi = [xi1, xi2, ..., xin]
⊤

∈ R
n are the state

variables of thei-th node;f : R
n → R

n is a C1

function which describes the dynamics of an isolated
node; and the constantγ > 0 ∈ R is the network’s
coupling strength. The connectivity is describe by the
coupling matrixC = {cij} ∈ R

N×N , which is con-
structed as follows: if thei-th andj-th nodes are cou-
pled the entriescij andcji are set to one(j 6= i); oth-
erwisecij = cji = 0; with the diagonal elements given
by cii = −

∑N

j=1(j 6=i) cij = −
∑N

j=1(j 6=i) cji = −di,
wheredi is the degree of thei-th node.
If there are no isolated nodes, the connectivity matrix

is irreducible with an eigenvalue spectrum of the form
[Wang and Chen (2003)]:

0 = λ1 > λ2 ≥ λ3 ≥ ... ≥ λN , (2)

The dynamical behavior of the network is said to be
synchronized if the trajectories of every node asymp-
totically follow the same reference:

lim
t→∞

‖xi − x̄‖ = 0, for i = 1, 2, ..., N (3)

Then, the stability of the synchronized behavior can be
determine from the deviations to the synchronized so-
lution x1 = ... = xN = x̄. Linearizing the synchro-
nization error,ξi = xi − x̄, aroundx̄ the following
variational equation is obtained:

ξ̇i = J(x)ξi + γ

N
∑

j=1

cijξj , for i = 1, 2, ..., N (4)

whereJ(x) is the Jacobian matrix off . Expressing (4)
in terms of the eigenvalues of the coupling matrix we
have:

ν̇i = J(x)νi + γλiνi, for i = 1, 2, ..., N (5)

where [ν1, ..., νN ] = Φ[ξ1, ...ξN ] with ΦCΦ⊤ =
diag{λ1, λ2, ..., λN}.
Applying the conventional definition of Lyapunov ex-

ponent (hi = limt→+∞ ‖J(t, x0)ui‖) to the expres-
sion in (5), thenN transverse Lyapunov exponents of
the network are given by [Barajas-Ramı́rez and Femat
(2012)]:

µi(λk) = hi + γλk, (6)



for i = 1, 2, ..., n andk = 1, 2, ..., N wherehi repre-
sents the Lyapunov exponents of a node in isolation.
Synchronization is achieved if every transverse direc-

tion to the synchronized solution is contracting. That
is, if µi(λk) < 0 for i = 1, 2, ...n andk = 2, 3, ..., N .
Letting hmax = h1 be the largest Lyapunov exponent
for a node in isolation, and from (2) the synchroniza-
tion condition becomesµ1(λ2) = h1 + γλ2 < 0 or
equivalently

|λ2| >
hmax

γ
(7)

From the above results a direct relation can be es-
tablish between the stability of synchronization and
the eigenvalues of the corresponding coupling matrix.
Furthermore, we can say that for a network with a
fixed coupling strength, larger values of|λ2| indicate
an improved tendency towards synchronization, usu-
ally called a strong synchronizability [Li (2005)]. The
synchronization region of the networkS is the set of
values ofγ such that (7) is satisfied. This region can
be unbounded[−∞, α), or bounded[α1, α2] the size
of the synchronization region is related to the eigenra-
tio of the coupling matrixr = |λ2|

|λN | [Pecora and Caroll
(1998); Chen and Duan (2008)].
From the discussion above, the effect of adding nodes

and links on the synchronizability of a network can be
determine from the change in the value of the largest
non-zero eigenvalue and eigenratio from the initial
(Ck−1) to the resulting (Ck) coupling matrix

∆σk = |λ2(Ck)| − |λ2(Ck−1)|

∆rk = |λ2(Ck)|
|λN (Ck)|

− |λ2(Ck−1)|
|λN (Ck−1)|

(8)

where positive values of∆σk and∆rk indicate that
as the network growths its synchronizability becomes
stronger, while negative values indicate that becomes
more difficult.

3 Network growth mechanism
The growth mechanism is inspired in the Barabási-

Albert (BA) model [Barabási and Albert (1999)]. As
a first step we consider the generic steps outlined as
follows:
• Growth. Starting with an initial network with (N0)

nodes, at every iterationk, a small numbernk (1 ≤
nk ≪ Nk) nodes withmk (mk ≤ Nk) edges are added
to the network and coupled tomk different nodes al-
ready present in the network.
• Attachment. Themk nodes to which the new node

will be connected are chosen at random, with the prob-
ability Π(j → i) of coupling a new (j-th) node to the
i-th node already in the network given by a preferential
attachment rule.
• Bridging. With probability pbr ≪ 1 additional

bridge edges are added to the resulting network.

In the original BA model the number of nodes and link
added in each iteration is fixed (nk = 1 andmk = m,
∀k), the preferential attachment is linear and given by

Π(j → i) =
di

∑

q dq
(9)

and once the edges are assigned they remain unaltered
(pbr = 0). In that case, afterM iterations the network
hasNM = N0 + M nodes andLM = mM edges.
The main distinctive characteristic of the resulting BA
network is that its connectivity follows a power-law de-
gree distribution. That is, the number of links per node
is not close to the average for the entire network. For
this reason the BA model is usually called the scale-free
network model [ Albert and Barabási (1999)].
It has been argued that the BA model represents a

simplified approximation of the evolutionary processes
that produced the scale-free nature of the node distribu-
tions observed in many real-world systems [Newman
(2010)]. However, many aspects of the evolution of
real-world networks are not capture by the original BA
model. Many variants have been proposed over the last
few years designed to improved on the original model
by capturing some specific aspect of network evolu-
tion (see [ Albert and Barabási (1999)], and references
therein). In particular, [Fan et al. (2005)] proposed
a synchronous preferential attachment mechanism in
which the probability of connecting a new node into
the network was chosen to maximize the value of crite-
ria for synchronization (7) according

Π(j → i) =
λ2i

∑

q λ2q
(10)

whereλ2i is the largest nonzero eigenvalue of the cou-
pling matrixC obtained if the new node is coupled to
the i-th node in the network. Alternatively, in order to
minimize the value ofλ2 instead of using a probability
(like equations (7) or (10)) the new node can be con-
nected only to the firstN0 nodes, resulting on a multi-
center network withN0 hubs, where theλ2 = −N0 in-
dependently of the size of the network [Fan and Wang
(2005)]. However, in such a connection all remain-
ing nodes (Nm − N0) will only be connected to the
hub nodes. Although, the works referenced above have
significantly advance the understanding of the synchro-
nization phenomenon on networks, many aspects of the
evolution of real-world networks are yet to be consid-
ered.
In the following Sections, we investigate the effects

of network growth on the synchronizability of the net-
work. Where growth is understand as adding nodes
to an already synchronized network. In this sense the
evolution mechanism is interpreted as a transformation
that increases the coupling matrix dimension, while the
edges are assigned as a combination of preferential at-
tachment and a complementary bridging process that



randomly adds a small number of edges to the existing
network.

3.1 Growth algorithm
The growth process can be interpreted as an event

driven system where at each iterationk the transfor-
mation,Φk, is applied to an initial network as follows:
Step 1: Adding nodes. At each iteration,nk new

nodes are coupled into the network.
This step transforms the previous coupling matrixCk

into C̄k+1 ∈ R
Nk+1×Nk+1 with

C̄k+1 = Φ̄k+1(Ck) =

(

Ck, αNk+1

αNk+1
, 0

)

(11)

for k = 0, 1, 2, ... where αNk+1
∈

R
(Nk+1−Nk)×(Nk+1−Nk) are zero matrices of ap-

propriate dimensions.
Step 2: Attachment. Each of the new nodes will be

coupled tomk+1(≤ Nk) of the nodes already exist-
ing in the network according to the linear preferential
attachment rule (9).
After this step the matrix̄Ck+1 is transform intoC̃k+1

with the same dimension given by

C̃k+1 = Φ̃k+1(C̄k+1) =

(

Ck, α̃Nk+1

α̃Nk+1
, 0

)

(12)

where the matrices̃αNk+1
are obtained by changing

mk+1 entries ofαNk+1
into ones according to (9).

Step 3: Bridging. With probabilitypbr ≪ 1 edges
are added between the existing nodes in network.
After this step the matrix̃Ck+1 is transform intoĈk+1

with the same dimension given by

Ĉk+1 = Φ̂k+1(C̃k+1) =

(

Ĉk, α̃Nk+1

α̃Nk+1
, 0

)

(13)

where the matrix Ĉk is obtained by changing
pbr

Nk(Nk−1)
2 entries from zero to one as a random pro-

cess with a uniform probabilitypbr.
Step 4: Diffusive coupling. In order to have a lin-

early and diffusively network, the matrix̂Ck+1 is trans-
formed intoCk+1 = Φ̌k+1(Ĉk+1) by adjusting the di-
agonal entries such that

cii = −

Nk+1
∑

j=1,i6=j

ĉij (14)

In a compact notation, each iteration of the growth
process can be represented by the transformationΦk+1

given, from Step 1 to 4, as:

Ck+1 = Φk+1(C(k)) = (Φ̌ ◦ Φ̂ ◦ Φ̃ ◦ Φ̄)k+1(Ck) (15)
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Figure 1. The absolute value ofλ2(Ck) of each resulting network

as nodes are added one at a time using the BA preferential attachment

with different variants

In the following Section, the effect of the proposed
growth mechanism in the synchronizability of the net-
work is investigated.

4 Numerical results
We investigate the effects on the growth algorithm de-

scribed above on the synchronizability of an already
synchronized network. In particular, we consider two
scenarios: In the first, nodes are added into the network
one at a time using the BA preferential attachment rule
with out bridging. In the second scenario, we added
a small number of bridging edges to the existing net-
work.
In Figure 1, the absolute value ofλ2(Ck+1) is plot-

ted as a function of the number of nodes added into
a globally connected network with ten nodes, we use
three different values for the number of edges added to
attache the node to de network.
The result shows that regardless of the numbermk

being used,λ2 is reduced significantly from the initial
values and becomes stationary as the number of nodes
increases. Further, the value at whichλ2(Ck) becomes
stationary depends directly onmk, with smaller val-
ues ofm reducing further the final value ofλ2(Ck) for
larger networks.
From the above results it can be establish that adding

nodes to a synchronized network using the preferen-
tial attachment mechanism proposed by Barabási and
Albert, reduces the synchronizability of the resulting
networks.

5 Conclusion
We investigated the changes in the stabilizability of a

dynamical network as its number of nodes and edges
growths. The novelty of our analysis cames from two
aspects of the analysis: On the one hand, we focus on
the effect of the actual growth process, that is, the ad-
dition of nodes and links to a network already synchro-
nized. On the other hand, the growth process was de-
scribed as a transformation which can be design to en-
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Figure 2. Comparison between the absolute value ofλ2(Ck) using

our proposed growth mechanism.

hance the stability characteristics of the synchronized
behavior. Our results show that adding nodes to an al-
ready synchronized network using the preferential at-
tachment mechanism, reduces the value ofλ2(Ck) re-
gardless of the choice ofmk used in the algorithm, and
that the reduction reaches a static value for larger net-
works. Through (8), we interpreted the reduction on
the value ofλ2(Ck) as a lost of synchronizability on
the resulting network. Then, by proposing a bridging of
the already existing nodes with a small number of extra
links chosen at random. We find that with this simple
compensation, the criterion in (8) is satisfied with basi-
cally the same value ofλ2(Ck) as the original network.
In this sense, the proposed growth mechanics enhances
the synchronizability of the network as it growths.
In this initial investigation, we proposed a new formu-

lation of the growth mechanims as a transformation of
the coupling matrix of a network. This representation
allows for the investigation of the effect of more gen-
eral situations, such as the addition or elimination of
more than one node at a time, and even can help in the
formulation of the stability problem for a network with
changing dimension. Results related to these different
situations on the synchronized behavior of a network
will be reported elsewhere.
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