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Abstract: Recently, space science and engineering advanced new problem before theoretical
mechanics and motion control theory: a spacecraft directed respinup by the weak restricted
control internal forces. The paper presents some results on this problem, which is very actual
for energy supply of the communication mini-satellites with plasma thrusters at initial mission
modes.
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1. INTRODUCTION

On April 1, 2009 it is 50 years since the specialized
department of S. Korolev Rocket-Space Design Bureau
(Moscow), was set up in Krasnoyarsk-26 on the Yenissey,
Siberia. In a short time period that small department had
grown into the Nauchno - Proizvodstvennoe Obyedinenie
(NPO) Prikladnoy Mekaniki (NPO PM). During these 50
years this company created over 1800 automatic space-
craft (SC) and became the respected Russian leader in
development, manufacture and operations of navigation,
coordinate-metric (geodetic) and telecommunication satel-
lite systems. Acad. M. Reshetnev , colleague and follower
of Acad. S. Korolev , was the General Director/Designer
of the NPO PM from the very first days of the Com-
pany till his death on 26.01.1996. Today the NPO PM
have name JSC ”Acad. Reshetnev Information Satellite
Systems” Company (ISS Reshetnev).

The priority dates of the ISS pioneering achievements:

• 18.08.1964 — first Soviet constellation of communi-
cation Cosmos series spacecraft had been created;

• 25.05.1965 — first Soviet communication satellite
Molniya-1 (Fig. 1), equipped with the world’s first
active 3-axial Attitude and Orbit Control System
(AOCS), was put into high-elliptic orbit;

• 15.11.1967 — first Soviet navigation SC Cosmos-192
was launched;

• 20.02.1968 — first Soviet geodetic satellite Cosmos-
203 was launched;

• 29.07.1974 — world-first retransmission satellite with
an active 3-axial AOCS was put into geostationary
orbit (GEO).
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Division on EMMCP of the RAS (Program 15).

Fig. 1. The Russian communication SC Molniya

Starting from 1975, the ISS is actively conquering the
GEO. The following spacecraft were launched:

• 22.12.1975 — first communication satellite of Raduga
series,

• 26.10.1976 — first television satellite of Ekran series,



Fig. 2. The Russian re-transmitter satellite Lutch

• 19.12.1978 — first communication satellite of Gori-
zont series,

• 25.10.1985 — first communication satellite of Lutch
series with completely new precision digital AOCS,
Fig. 2.

Geostationary spacecraft of Gals series (20.01.1994) and
Express series (13.10.1994), Fig. 3, were put into nominal
operations. After 30.09.1981 the ISS had started deploy-
ment of the first Soviet geodetic satellite system based on
the spacecraft GEO-IK , and after 12.10.1982 — the well-
known Russian space navigation system Glonass, Fig. 4.

The ISS is known all over the world as a designer and
manufacturer of communication, navigation and geodetic
spacecraft. It is less known that the ISS is a designer
and manufacturer of various types of Attitude & Orbit
Control Systems (AOCS), which are the most complex

Fig. 3. The Russian geostationary satellite Express

Fig. 4. The Russian navigation spacecraft Glonass

and expensive among the onboard subsystems. The ISS
has developed a wide spectrum of spacecraft AOCS types:

• the passive systems, which use the Earth gravitation
and magnetic fields for the SC attitude control;

• the combined systems with electromechanical drives
used for autonomous pointing of receiving-transmitting
antenna platforms with respect to the SC body, pas-
sively oriented in the orbit;

• the active systems, which use various types of electro-
mechanical actuators, magnetic torques used for their
desaturation on accumulated angular momentum
(AM) as well as electromechanical systems of au-
tonomous pointing Solar Array panels and antenna
platforms.

Fig. 5. The geostationary spacecraft Sesat



Fig. 6. The communication satellite Express-AK

For the purpose of orbit control (spacecraft orbit-keeping
manoeuvres) the special types of propulsion units have
been designed, using gas, thermal-catalytic and plasma
thrusters. AOCS developed by ISS could be used for
various spacecraft in circular, elliptic and geostationary
orbits, see Fig. 5.

The ISS has accumulated substantial research and practi-
cal experience in solving problems of the algorithm synthe-
sis for motion control of interconnected mechanical objects
with complex dynamic structure under determinate and
stochastic disturbances, as well as problems of configuring
equipment and structure of such systems. Methodology
and technology of their experimental development under
the close-to-real-space flight environment have also been
created. Substantial experience was also acquired in on-
board software development of methods for on-ground
and flight calibration, as well as spatial adjustment of
the onboard sensors, antennas and actuators. Valuable
information on real disturbing factors due to the spacecraft
interaction with space environment has been obtained and
systematized.

For over 30 years the ISS has successfully coordinated
research and developments in orbit and attitude control of
communication, navigation and geodetic spacecraft, which
are conducted by the leading institutes of the RAS, by re-
search institutes and design bureau of the FSA, and also by
aerospace universities. ISS conducts joint research with the
world-known scientific schools of Acad. B.N. Petrov and
Prof. V.Yu. Rutkovsky (S.D. Zemlyakov, V.M. Sukhanov
et al., Institute of Control Sciences, the RAS), Acad.
V.M. Matrosov (The Stability and Nonlinear Dynamics
Research Center, the RAS), Ye.I. Somov (Samara Scien-
tific Center, the RAS), L.V. Dokutchaev, O.P. Klishev
(TsNIIMash, the FSA), V.V. Malyshev, M.N. Krasilshikov
(MAI), G.L. Degtyarev (KAI).

In the current practice, geostationary satellites enjoying
15-year life and high-accurate station-keeping maneuvers
are equipped with thruster unit based on plasma reaction
thrusters (RTs) having high specific pulse and large power
consumption. While designing mini-satellite weighted of
400 to 800 kg (as Russian satellite Express-AK , Fig. 6) it
is very attractive to employ plasma RTs only for all modes.
The constrains at the problem are as follows (Titov et al.,
2003):
• On separating from a launcher, a spacecraft (SC) obtains
an initial angular rate up to 20◦/s. During that SC rotation
an electric power required for the on-board equipment is
generated by solar arrays panels (SAPs) or by chemical
batteries. An energy generated by the SAPs depends on

Fig. 7. The rotating SC attitude over the Sun

an angle between their normal and direction towards the
Sun.
• Plasma RT enjoy small thrust values (about several
grams) and large power consumption (magnitude of 1 to
1.5 kW). Small thrusts and therefore small control torques
are the cause of a long time period required to damp initial
SC rate. The plasma RTs can be activated a specified
time period Ta from several hours to several days after
the separation.
• Severe requirements applied to the mass of the attitude
& orbit control system (AOCS) installed on a mini-satellite
result in the fact that the angular momentum (AM) of a
gyro moment cluster (GMC) based on the reaction wheels
(RWs) or on the single-gimbal control moment gyroscopes
— gyrodines (GDs), is significantly lower then the SC’s
AM obtained after its separation.

The engineering problem is to ensure such motion of a
SC separated with no plasma RTs used, under which the
energetic conditions are met, and then after the specified
period Ta to complete a SC orientation towards the Sun by
plasma RTs. The approach applied is based on two main
assumptions:
• the plasma RTs are applied to perform two tasks:

(i) satellite attitude control and unloading of an
accumulated AM, and (ii) satellite orbit control;

• a small-mass GMC having a small AM is applied at
initial mode without joining-up the RTs.

At a separation time moment t0, a satellite body AM
vector K0 ≡ Jω(t0) = G0 has an arbitrary direction,
therefore the principle problem is to coincide this satellite
vector with the maximum inertia satellite body axis Oy
using only the GMC having small resources for the AM
and control torque variation domains. Essentially nonlin-
ear dynamical processes are arising from a moving the total
AM vector G(t) of mechanical system with respect to the
satellite body reference frame (BRF) Oxyz. Moreover, a
Sun sensor is switched on, the Sun position is determined
within the BRF and, if required, the SAPs are turned by
an angle γp, 0 ≤ γp ≤ 270◦. In result, the SC angular rate
is set along the axis Oy which is perpendicular to the SAPs
rotation axis. Depending on the initial vector G angular
position and direction S towards the Sun, the SAPs will be
illuminated either continuously when the vectors G and S
have coincided, or periodically if G⊥S, see Fig. 7. At this
phase of the SC mission, the GMC is applied to generate
control torques and plasma RTs are not activated. At next



phase of the AOCS initial modes the RTs are turned on
and generate the control torques to damp a SC angular
rate.

In the paper, only principle aspects of strongly nonlinear
dynamics related to the robust controlled coincidence of
the SC body Oy axis with the SC’s AM vector G are
presented. Results early obtained, see Fig. 3 in Somov
et al. (2004), are direct proofs for large efficiency of the
GDs as compared with the RWs. The solution achieved
is based on the methods for synthesis of nonlinear robust
control (Somov, 2002; Somov and Rayevsky, 2002) and
on rigorous analytical proof for the required SC rotation
stability (Somov et al., 2003c, 2004). These results were
verified by computer simulation (Somov et al., 1999a) of
strongly nonlinear oscillatory processes at respinuping a
flexible SC.

2. THE PROBLEM BACKGROUND

Most satellites contain a GMC to provide gyroscopic sta-
bility of a desired attitude of the SC body, problems of
gyrostat optimal control (Krementulo, 1977; Chernousko
et al., 1980; Somov and Fatkhullin, 1975; Junkins and
Turner, 1986) and synthesis of control laws (Zubov, 1975,
1982, 1983) had been studied. V.I. Zubov’s results were es-
sentially developed by Ye.Ya. Smirnov (1981) and his suc-
cessors (Smirnov et al., 1985; Smirnov and Yurkov, 1989).
Here a Lyapunov function is applied with small parameter
for its crossed term. This idea for mechanical systems
rises to G.I. Chetayev (1955). Instead that A.V. Yurkov
(1999) applied a large parameter for a position term at
the Lyapunov function.

The SC spinup problems have been investigated by numer-
ous authors, see Hubert (1981b); Huges (1986); Guelman
(1989); Hall (1995a,b) et al. C.D. Hall (1995a) have been
obtained a bifurcation diagram for all gyrostat spinup
equilibria manifolds. Different approaches were applied to
convert the intermediate axis spin equilibrium to those of
major axis spin (to respinup the SC body) by variation
of the RWs AM (Hubert, 1981a,b; Huges, 1986; Salvatore,
1991). If enough AM is added, the desired spin is glob-
ally stable in the presence of energy dissipation (Huges,
1986). However, no literature was found suggesting the
SC respinup feedback control by the GMC having small
resources, when the SC body AM vector have a large value
and an arbitrary direction.

3. MATHEMATICAL MODELS

3.1 Spacecraft rigid model

Let we have a free rigid body (RB) with one fixed
point O and any GMC. An inertia tensor J of the
RB with a GMC is a arbitrary diagonal one, i.e.
J = dJx, Jy, Jzc ≡ diag{Ji, i = x, y, z ≡ 1÷3} within the
BRF Oxyz. Model of the RB motion is presented at well-
known vector form

K̇ + ω ×G = M ≡ −Ḣ, (1)
where ω = {ωi} is an absolute angular rate vector of the
RB; K = Jω is an AM vector of the RB equipped with
a GMC; G=K + H is a total AM for mechanical system
in the whole; H is a column-vector of a GMC total AM
determined in the BRF.

3.2 Spacecraft flexible model

Simplest model of a free flexible body (FB) motion is
presented also at the vector-matrix form with standard
notations

Ao{ω̇, q̈} = {Fω,Fq}, (2)
where G = Go + Dqq̇; Go = Jω + H(β);

Ao =
[

J Dq

Dt
q Aq

]
;

Aq = daq
j , j =1÷nqc

q = {qj , j =1÷nq};
Fω = M− ω×G; Fq =−{aq

j((δ
q/π) Ωq

j q̇j + (Ωq
j)

2 qj)}.

3.3 The GMC based on the GDs

It is suitable to present any

Fig. 8. The 2-SPE scheme

GMC type using a canon-
ical reference frame (CRF)
Eg

c(x
g
c , y

g
c , zg

c ). The necessary
location of the required do-
main S of the GMC AM H
variation within the BRF is
achieved by the CRF orien-
tation versus the BRF. Ap-
plied 2-SPE (2 Scissored Pair
Ensemble) scheme on 4 GDs
with own AM hg is presented
in Fig. 8. Within precession
theory of control moment gy-
ros the AM vector H by this
scheme have the form H(β)=
hgAγh with constant non-

singular matrix Aγ , where a normed vector h=
∑

hp(βp)
made up from units hp(βp), column β = {βp} presents
the GD’s precession angles, column h ≡ {x, y, z}, where
x = x12 + x34; x12 = x1 +x2; x34 = x3 +x4; y = y1 + y2;
z = −(z3+z4); xp = Cβp ; yp =Sβp ; zp =Sβp with Sα ≡ sinα
and Cα ≡ cos α. At the command column u = {up} the
vector of the GMC output control torque have the form

Mg =−Ḣ=−hgAh(β)u; β̇=u, (3)
where matrix Ah(β) = AγAh(β) and matrix

Ah(β)≡∂h(β)/∂β =

[−y1 −y2 −z3 −z4

x1 x2 0 0
0 0 −x3 −x4

]
.

The GDs’ precession angles vary within the full range, but
the domain S of the GMC’s AM vector H(β) variations is
limited. The ”control” up(t) of each GD is module-limited
by given positive parameter um :

|up(t)| ≤ um, p = 1 : 4, ∀t ∈ Tt0 . (4)
These constrains are converted into β-dependent convex
variation domain for a control torque M=Mg.

4. THE PROBLEM STATEMENT

Considering the model (1), let denote an AM vector of
a RB at initial time moment t0 as K0. Let the vector
of a GMC’s total AM at the initial time be equal to
zero, i.e. H0 ≡ H(t0) = 0. A norm of the vector K0

is assumed to be limited with the given constant, i.e.
‖ K0 ‖≤ k∗o , k∗o > 0, but the direction of this vector within
the BRF is arbitrary. Therefore, at the time t = t0 the
total AM vector related to the whole mechanical system
G0 =K0 with ‖ G0 ‖≡ go ≤ g∗o = k∗o .



The inertial parameters of the RB are assumed to be
known, the same for the possibility to measure the vector
ω(t) and the vector H(t). Let establish of a fixed unit
vector f = ey = {0, 1, 0} or f = −ey = {0,−1, 0} is given
within the BRF — the unit of a RB having the largest
moment of inertia or the one opposite.

The problem consists in designing required GMC control
law which enable achieving such condition of a gyrostat (1)
with the specified accuracy by any time moment t = Tf :

Kf = J ωf ; ωf = ωf f ; Hf = Hf f , (5)
where Kf ≡ K(Tf); Hf ≡ H(Tf); ωf ≡ ω(Tf) and module
Hf of the total GMC AM’s is established, in particular, as
Hf = 0. Taking into account the identity Jy ωf +Hf = go,
where the value Hf shall meet some constrains, one can
find the obvious relation ωf =(go −Hf)/Jy.

After solving this vital problem, it is necessary to en-
sure the distribution of the AM H and control torque
M = Mg vectors between four GDs. It is desirable to
have the explicit distribution law (DL) allowing to obtain
all movement characteristics for each electro-mechanical
actuator based on the analytical relations. The GMC with
collinear GD gimbal axes obtains a significant advantage:
all its singular states are passable (Somov et al., 2003b).
At 4 GDs the same approach is possible only for 2-SPE
scheme. The DL for such GMC was early presented in
Somov (2002) and Somov et al. (2003b). It is also necessary
to consider a respinuping the flexible spacecraft structure
through using four GDs.

5. SYNTHESIS OF MAIN CONTROL LAW

An AM vector G(t) = J ω(t) + H(t) of the whole
mechanical system with no external torques has its value
unchanged within any inertial reference frame (IRF), in
accordance with the theoretical mechanics principles. The
unit vector g(t) ≡ {gi(t)} = G(t)/go is also a fixed one
within the IRF, but within the BRF this unit is moving in
accordance with equation

ġ(t) = −ω(t)× g(t). (6)
Let the following be calculated within the BRF when the
system moves as per the measured values of the ω(t) and
H(t) vectors:
• position of an AM unit vector g(t);
• position of a vector ξ(t) = g(t)× f ;
• for ‖ ξ(t) ‖= Sϕ(t) ≡ sinϕ(t) ≥ ε1 = const the unit

vector value eξ(t) = ξ(t)/ ‖ ξ(t) ‖;
• a cosine of angle between the units g and f , namely

Cϕ(t) ≡ cos ϕ(t) = 〈f ,g(t)〉.
A mismatch between the actual and required values of the
SC rate vector is presented as

η(t) = δω(t) ≡ ω(t)− ωf f . (7)
Let assume that at time t0 there is also calculated an
indicator af = Sgn Cϕ(t0) of the unit vector direction f
by the definition

Sgn x=1 for x ≥ 0 and Sgn x=−1 for x < 0,
and then we determine the unit vector f = afey. At the
denotation ζ(t) = g(t) − f as a nearby measure for the
unit vectors g and f , it is suitable to use a scalar function

vp(t)≡vp(ζ(t))= |ζ(t)|2/2=1− 〈f ,g(t)〉>>0. (8)

This function have positive values under g(t) 6= f and
obtains zero value at the above vectors coincided only.
With the above selection of the unit vector f =af{0, 1, 0},
we always have vp(t0) ≤ 1. Taking into account standard
vector identities 〈a, (b × c)〉 ≡ 〈b, (c × a)〉 ≡ 〈c, (a × b)〉
and ζ̇(t) ≡ −ω(t)× g(t) by (6), we have derivative of the
function vp (8) as follows

v̇p =〈ζ(t), ζ̇(t)〉 = 〈ξ(t),η(t)〉. (9)
Vectors ξ(t) and ζ(t) are connected by identities

ξ2≡ζ2(1− ζ2/4); ζ2≡2ξ2/(1 + (1− ξ2)1/2), (10)
moreover the vector ξ(t) is moving by equation

ξ̇=η − φ; φ≡ωfζ + g〈f ,η〉+ (η+ωf f)ζ2/2. (11)
Taking into account that due to (7) ω̇(t) = η̇(t) and the
relations

G(t)=gog=gof + go(g(t)− f) = Kf + Hf + goζ(t);

ν ≡ Jη − goζ = −(H−Hf); ν̇ = Jω̇ + ω ×G,

the equation (1) is presented in simplest form

ν̇ ≡ Jη̇ − goζ̇ = M = −Ḣ. (12)
The function ve(ν) ≡ ν2/(2jh) = (H − Hf)2/(2jh)
defines a GMC kinetic energy at its motion with respect
to required equilibrium in the BRF, where any constant
jh > 0 presents its inertia properties.

The RB movement required Oη ≡ {ξ = 0;η = 0} is the
same Oν ≡{ξ = 0;ν = 0} due to the identities (10). For
denotation ρ2(t) ≡‖ ξ(t) ‖2 + ‖ η(t) ‖2 in the first let
consider any small domain

O ≡ {‖ ξ ‖< ε1} ∩ {‖ ρ ‖< ερ = const},
within which no constrains for the control torque M vector
have occurred. To justify the structure of the control
torque M law into the equation (12), we introduce the
Lyapunov function

V(ζ, ξ,η)=a b vp(ζ) + (a/jh)〈ν,Pξ〉+ ve(ν), (13)

where scalar parameters a > 0, b > 0 and P is a constant
definitely-positive matrix. For large value of parameter b
the function V (13) is definitely positive with respect to the
vector variables ζ and η. The derivative of this function
with (9) and (12) taken into account have the form

V̇=ab〈ξ,η〉+ [〈M,µ〉+ 〈ν,Pξ̇〉]/jh, (14)
where vector µ ≡ ν+aPξ. For domain O the GMC control
law is selected in the form

M = Mξ ≡ −qjhDµ = −m [ ξ + kDν] (15)
with parameters q > 0, m = qjha > 0, k = 1/a > 0 and
definitely-positive matrix D = P−1.

Theorem For the RB movement required Oη of the
system’s model (11), (12) with the control law (15) the
property of exponential stability

ρ(t)≤ β ρ(t0) exp(−α(t− t0)), α, β=const > 0 (16)
is guaranteed for arbitrary vector of initial conditions
{ξ(t0),η(t0)} ∈ O0 ⊆ O at chosen large value q(go).

Proof The derivative (14) of function (13) by the relation
(11) taken into account is presented as

V̇ = −qa2〈ξ,Pξ〉+ a(b 〈ξ,η〉 − 2q〈ξ,Jη〉)
−q〈ν,Dν〉+ (a/jh)〈ν,P(η − φ(η, ζ))〉,

(17)



Fig. 9. Dynamics of the flexible SC respinup by 4 GDs with hg = 7.5 Nms and constrains um = 10 deg/s.



where vector ν = Jη − goζ and the function φ(·) was
defined in (11). Taking into account

〈ν,Dν〉=〈DJη,Jη〉 − 2go〈DJη, ζ〉+ g2
o〈Dζ, ζ〉

and analogous representations of the terms 〈ν,Pη〉,
〈ν,Pζ〉, 〈ν,Pφ〉 in (17), and also identities (10), one
makes sure of the majoring V̇ ≤ −W(ξ,η), where scalar
function W(·) is definitely positive with respect to vari-
ables ξ and η for large values of parameters b and q,
depending on total AM value go.

By analogy with Smirnov (1981) there is proved that
W(t) → 0 at t → ∞ and function V(t) is decreased
monotonically. Standard estimates (Smirnov and Yurkov,
1989; Yurkov, 1999) are derived from majoring functions
V and W by quadratic forms

a1ρ
2≤V≤a2ρ

2, a1 > 0; b1ρ
2≤W≤b2ρ

2, b1 >0,

from where the condition (16) is appeared with the para-
meters α = b1/(2a2) and β = (a2/a1)1/2. 2

Due to the identity ν≡Jη− goζ =−(H−Hf) the control
law (15) is appeared in very simple form

Mξ = −m[ ξ(t)− kD(H(t)−Hf) ]

interior to nearest neighborhood of required gyrostat state
Oη. Outside this neighborhood the control law is not
effective because of various equilibria manifolds (Hall,
1995a) which exist at conditions Mξ = Jη̇ − goζ̇ ≡ 0
but Jη − goζ = c and aPξ = −c with a constant vector
c 6=0. Therefore other simple control laws are needed for
fastest the SC respinuping without sticking its motion on
any equilibria manifold differing from the state Oη. For
denotations

Mr
ξ(t)≡−m [ eξ(t)SgnCϕ(t)− kD(H(t)−Hf) ],

Mr(t) ≡ −M∗ {Sgn gi(t), i = x, y, z},
where M∗ is a large constant parameter, developed control
law has the form

M =


Mξ(t) ‖ ξ(t) ‖< ε1;

Mr
ξ(t) ε1 ≤‖ ξ(t) ‖≤ ε2;

Mr(t) ‖ ξ(t) ‖> ε2,

(18)

where for example, the parameters ε1 = 0.1 (angle ϕ = 6◦)
and ε2 = 0.5 (angle ϕ = 30◦).

6. COMPUTER SIMULATION

Based on the above control laws, the SC motion have been
simulated with the following parameter values: Jx = 2900,
Jy = 3600 and Jz = 870 kgm2 (Somov et al., 2003a).

Fig. 3 in Somov et al. (2004) summarizes the simulation
results for initial position of the SC AM vector G(t0) with
module go = 300 Nms along the unit g(t0) = {0, 0, 1}
within the BRF and its final position coincided with the
unit f = {0, 1, 0}. For clearness in this paper the simplest
canonical GMC schemes were applied:

• canonical scheme on 3 RWs with constrains Mm =
0.15 Nm and Hm = 5 Nms;

• the 2-SPE scheme on 4 GDs, see Fig. 8, with own
AM hg = 7.5 Nms, angle γg = π/4 and constrain
um =10 deg/s.

Some results on the flexible spacecraft dynamics during
its respinuping by four GDs with the same parameters,
are presented in Fig. 9.

Optimization (Somov, 2000) and robust gyromoment con-
trol problems (Somov et al., 1999b; Somov, 2001; Matrosov
and Somov, 2003) were also considered for respinuping the
flexible spacecraft.

In addition to Somov et al. (2005a) and Somov et al.
(2005b) problems of the SAPs guidance on the Sun were
studied for mode of the SC body settled rotation. Moreover
the SC inertia tensor is changed into the BRF and the
GMC’s control torque vector M = Mg is recalculated for
the principle central axes for this inertia tensor.

7. CONCLUSIONS

Principle aspects of nonlinear dynamics related to the
controlled coincidence of any SC body axis with the SC
AM vector by the GDs were presented.

Methods for synthesis of nonlinear control and analytical
proof for the required SC rotation stability were developed.
Optimization and robust gyromoment control problems
were considered for respinuping a flexible spacecraft.

Obtained results were verified by the careful computer
simulation of strongly nonlinear processes.
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