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Abstract
Simple condition for the stability of vertical large am-

plitude oscillations of nonlinear heavy spring elastic
pendulum is given that is valid for a wide range of con-
trol parameter values. The condition is tested and the
bifurcation responsible for the lost of stability is ex-
plained and illustrated.
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1 Introduction
Elastic pendulum is a simple model that exhibits

a wide and surprising range of dynamic phenom-
ena [Anicin, Davidovic and Babovic, 1993], [Bre-
itenberger, Mueller, 1981], [Cayton, 1977], [Davi-
dovic, Anicin and Babovic, 1996], [Lai, 1984], [Ols-
son, 1976], [Rusbridge, 1980].
The first known publication about the elastic pendu-

lum is the paper [Vitt and Gorelik, 1933] by Vitt and
Gorelik. They consider small amplitude oscillation of
a planar elastic pendulum in the 2:1 resonance. Con-
nection to the Fermi resonance of CO2 is mentioned.
This paper has been translated from Russian by Lisa
Shields and published by Peter Lynch on his web page.
Deterministic chaos has been observed in numeri-

cal simulation and presented in the form of Poincare
section, auto-correlation function, Lyapunov exponent
and power spectrum in [Carretero-Gonzalez, Nunez-
Yepez and Salas-Brito, 1994]. [Cuerno, Ranada and
Ruiz-Lorenzo, 1992], [Nunez-Yepez, Salas-Brito, Var-
gas and Vicente, 1990], The bifurcation diagram of
a plane elastic pendulum is sketched in [Kuznetsov,
1999]. The most thorough treatment of small amplitude
oscillation of both plane and space elastic pendulum
can be found in the works by Peter Lynch [Holm and
Lynch, 2002], [Lynch, 2002a], [Lynch, 2002b], [Lynch
and Houghton, 2004].

2 Definition of the system
Consider a pendulum consisting of a point bob of

massmB suspended on a homogeneous elastic spring
of massmS with the elasticity constantk, see Fig. 1.
Assume a homogeneous gravitational field with inten-
sity (0,−g).
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Figure 1. Heavy spring elastic pendulum consists of a point mass

mB attached to a spring with massmS which is fixed at the other

end point.

In [Pokorny, 2008] we derive the equations of motion.
In 2-dim they are

ẍ = ( 1√
x2+y2

− 1)x

ÿ = ( 1√
x2+y2

− 1)y − p.
(1)

This system has the only parameter

p =
(mB + mS

2
)g

kℓ0



whereℓ0 is the length of the unloaded spring.

3 Stability condition
In [Pokorny, 2008] we also derive the stability condi-

tion for the vertical oscillations

x = 0, y = −1 − p + a sin t (2)

wherea is the amplitude of the vertical oscillation. The
vertical oscillation of the heavy spring elastic pendu-
lum with the relative amplitudea is stable for

|a| < |aC(p)|

where

aC(p)
.
= (3p)

2

3 − 1. (3)

The error of this estimate ofaC(p) is less than 0.005
for 0 < p < 0.6.
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Figure 2. The stable region (blue) and the unstable region (red) for

the vertical oscillation with amplitudea and the external fieldp.

Fig. 2 shows the regions in thep-a plane with stable
(blue) and unstable (red) vertical oscillation with am-
plitudea and the parameterp.
To illustrate the stability condition assume we want to

find the minimal value of the parameterp where the
vertical oscillations with the amplitudea = 0.1 be-
come unstable. The two positive solutions of the equa-
tion

|(3p)
2

3 − 1| = 0.1

give estimates for two critical values

p1

.
= 0.2846

and

p2

.
= 0.3846.
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Figure 3. When the vertical oscillations are stable, the horizontal

displacementx of the bob remains small in time if starting from a

small value. Herex(0) = 0.0001 andx′(0) = 0 was used. In

this picturex(t) is sampled in equidistant time intervals∆t = 1
and the points are not joined.
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Figure 4. When the vertical oscillations are unstable, the horizontal

displacementx of the bob grows even for arbitrarily small initial

valuex(0). Herex(0) = 0.0001 andx′(0) = 0 was used.

Remark: fora going to zero, bothp1 andp2 go to 1

3

exactly.
Thus the vertical oscillations with the amplitudea =

0.1 are stable forp < p1

.
= 0.2846. What hap-

pens whenp crosses this critical value? First we show
x(t) for p slightly below and slightly above this critical
value.
In Fig. 3 the time dependence ofx is plotted for the

parameter valuep = 0.2845 and the initial condition
x(0) = 0.0001, x′(0) = 0, y(0) = −1 − p − a =
−1.3845, y′(0) = 0. The motion is quasi-periodic and
x(t) is never greater in absolute value than the initial
valuex(0).



x

x’

-0.10 -0.05 0.00 0.05 0.10
-0.050

-0.025

0.000

0.025

0.050
p=0.283

Figure 5. The Poincare cut of the trajectory with the horizontal

planey = −1 − p in the stable regime. The vertical periodic

oscillation results in a single point(x, x′) = (0, 0). Around this

periodic solution (a closed loop in the state space) there isa one pa-

rameter family of quasi-periodic solutions (invariant tori in the state

space) resulting in a one parameter family of invariant closed curves

in the Poincare section. Only 5 curves are depicted.

A small change of the parameterp results in a differ-
ent type of behavior. In Fig. 4 the same variables are
plotted for the parameter valuep = 0.2847 and the
initial condition x(0) = 0.0001, x′(0) = 0, y(0) =
−1 − p − a = −1.3847, y′(0) = 0. The variablex(t)
grows approximately exponentially for a certain time
period, reaching an amplitude greater than the initial
value by more than two orders of magnitude.
The qualitative change in the phase portrait can be

observed in the Poincare cut. Consider the horizon-
tal planey = −1 − p containing the lower equilibrium
point of the system and consider those intersections of
the trajectory with this plane where the bob goes up,
i.e. the points such thaty = −1 − p andy′ > 0. The
projections of these points to thex-x′ plane are pre-
sented in the following two pictures. In Fig. 5 the pro-
jection of the Poincare cut into thex-x′ plane is shown
for a = 0.1 andp = 0.283. These parameters corre-
spond to stable vertical oscillation. This stable vertical
periodic solution corresponds to a closed loop in the
state space and to a single point in the Poincare cut (the
point (0,0) in our projection). Around this point there
is a one parameter family of invariant closed curves
covered densely by the intersections of the trajectory
with the plane. Five of them are shown in Fig. 5 for
five different initial conditions(x(0), x′(0)), namely:
(0.01, 0), (0.02, 0), (0.03, 0), (0.04, 0), (0.05, 0).
Increasing the parameterp above the critical value

p1

.
= 0.2846 the vertical oscillations lose their stability

via a period doubling bifurcation giving rise to a pe-
riodic solution with a period two times greater. This
new periodic solution intersects the horizontal plane
y = −1 − p in four points, two of them withy′ > 0
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Figure 6. The Poincare cut for supercritical value of the parameter

p. The figure-eight curve going from the origin shows the homo-

clinic orbit dividing the plane into regions of two types. Those inside

the loops of the figure-eight contain invariant curves corresponding

to invariant tori with two intersections with the horizontal plane. And

the region outside of the figure-eight is filled with the invariant curves

corresponding to tori with just a single intersection with the horizon-

tal plane.

and two of them withy′ < 0.
This is illustrated in Fig. 6 where for the super-

critical value of the parameterp = 0.286 the
Poincare cut is shown for five different initial con-
ditions (x(0), x′(0)), namely: (0.009, 0), (0.005, 0),
(0.00001, 0), (0.0146,−0.00804), (0.0208,−0.0112).
Only points withy′ > 0 are shown.
Emanating from the origin there is a figure-eight

curve. This corresponds to a homoclinic orbit. Inside
each of its two lobes there is a point corresponding to
the new periodic solution. This point is surrounded by
a one parameter family of closed loops corresponding
to invariant tori. Outside this figure-eight curve there is
the one parameter family of closed loops corresponding
to invariant tori that survived the bifurcation.
How do the eigenvalues of the linearization matrix of

the Poincare map in(0, 0) change? Forp < p1 we
have a pair of complex conjugate eigenvalues on the
unit circle in the complex plane. Forp approachingp1

these eigenvalues approach−1. When the parameterp
crosses the critical valuep1 the eigenvalues cross the
point−1 and then stay real, one of them less than−1,
the other greater than−1. As one eigenvalue leaves the
unit circle in the complex plane, the solution becomes
unstable. The eigenvector corresponding to the eigen-
value outside of the unit circle gives the unstable direc-
tion (more precisely is tangent to the unstable manifold
of the origin).
Even when the vertical oscillations lose their stability,

initial conditions withx(0) = 0 andx′(0) = 0 exactly
lead to pure vertical oscillations. However, almost any
small deviation from zero, either inx or in x′ (or in



both of them) leads to the orbit with points that depart
from the origin in the Poincare section. If the initial de-
viation from zero was small it takes a long time before
the deviation grows to observable values. This means
the pendulum behaves for a long time similarly to the
case of stable vertical oscillations. After some time the
point in the Poincare section goes away from the origin,
travels around the loop of the figure-eight (this is man-
ifested by horizontal swinging of the pendulum) and
then it goes back close to the origin where it stays for a
long time to depart again.
Initial conditions not close to the origin lead to quasi

periodic oscillations on the invariant tori, either inside
the figure-eight loop or outside of it.
To summarize, for a fixed (not necessarily close to

zero) amplitudea of vertical oscillations when the pa-
rameterp is increased, then the following three types of
behavior can be observed depending on the parameters
a andp.

1. For small positivep the vertical oscillations are
stable.

2. When crossing the critical value

p1

.
=

1

3
(1 − a)

3

2

a period doubling bifurcation occurs and the verti-
cal oscillations are unstable for

p1 < p < p2.

A branch of periodic solutions appears forp > p1.
3. When

p > p2

.
=

1

3
(1 + a)

3

2

the vertical oscillations are again stable. When de-
creasing the parameterp then crossing the critical
valuep2 a similar period doubling bifurcation oc-
curs.

It is important to note that in the unstable region for

p1 < p < p2

the origin is a hyperbolic homoclinic fixed point of the
Poincare map. For initial conditions corresponding to
points(x(0), x′(0)) in a small neighborhood of the ori-
gin, we can observe the following four types of qual-
itatively different behavior. The figure-eight intersects
a small neighborhood of the origin in two curves that
cross each other in the origin. One of them is tan-
gent to the eigenvector of the linearization matrix of
the Poincare map corresponding to the eigenvalue less
than -1. This curve is the unstable manifold. The other
curve is tangent to the eigenvector corresponding to

the eigenvalue greater than -1. This curve is the stable
manifold. The four different types of behavior depend-
ing on the initial condition are as follows.

1. When starting in the origin we get unstable peri-
odic vertical oscillations.

2. Starting on the stable manifold results in orbit
points approaching the origin. The correspond-
ing trajectory of the continuous time system ap-
proaches the unstable vertical periodic trajectory.
This type of behavior is also unstable thus experi-
mentally difficult to observe.

3. Initial conditions corresponding to points close to
the origin and on the unstable manifold produce
the orbit of points lying on the figure-eight curve.
They depart from the origin initially, and then they
approach the origin asymptotically again, accord-
ing to the previous scenario.

4. However, the most typical case is as follows: we
start in a point close to the origin which is not lo-
cated on the figure-eight curve exactly, it is only
close to it. Then initially the points of the orbit
depart from the origin, the amplitude of the hor-
izontal oscillations grows temporarily, reaches its
maximum and then decreases again to small values
close to the initial one. In this phase the points of
the orbit approach the origin for a certain number
of iterations. Then they depart again. In the course
of time, in a typical case, they fill densely a closed
invariant curve in the Poincare section, the trajec-
tory fills densely an invariant torus. In the limit of
initial condition approaching the origin, the period
of the envelope (which was approximately5000 in
the case shown in Fig. 4) goes to infinity and the
ratio of the maximum value ofx(t) to the initial
valuex(0) (which was more than100 in the case
shown in Fig. 4) goes to infinity too.

4 Conclusion
The surprising behavior of the elastic pendulum when

the vertical oscillations are sometimes stable but some-
times interrupted by intermittent short time horizontal
oscillations (as observed also in [Havranek and Cer-
tik, 2006], [Dvorak, 2006]) was explained using the
dynamical systems approach. The model of a heavy
spring elastic pendulum was given and the condition
for the stability of vertical oscillations was tested. The
lost of stability of vertical oscillations was explained by
the period doubling bifurcation leading to the birth of a
family of periodic solutions with twice the period.
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