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Abstract
Ultrasensitive quantum detection of external weak sig-

nals at the nanoscale levels can be implemented in a vari-
ety of forms. Here we discuss different feedback control
algorithms for the sensing scenario based on the semi-
classical Tavis-Cummings model for nitrogen-vacancy
(NV) centers located in the diamond. In the frame
of this model, the sensing elements are considered as
non-interacting two-level quantum systems, distributed
in-homogeneously due to heterogeneous local magnetic
and strain environments.

The dynamical system of ordinary differential equa-
tions corresponding to the model contains the set of con-
trol parameters: the detunings between the drive fre-
quency and the cavity frequency and between the drive
frequency and NV transition frequency, as well as the
relaxation coefficients. Correspondingly, it opens a gate
for developing feedback control algorithms for tracking
the cavity field, the income signal, and the reflection sig-
nal in the model sensing system.

To study the principal features of algorithmic feedback
we formulate the simplified ’toy model’ for the Tavis-
Cummings system and investigate alternative schemes
of feedback (gradient methods, target attractor methods)
to compare their pros and cons for effective control for
nitrogen-vacancy-cavity quantum sensing based on dif-
ferent choices of the control parameter set.
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1 Introduction
Modern sensors cover a wide range of devices [Fraden,

2004], including networks for classical [Sergeenko and
Granichin, 2022] and quantum [Coles, 2021] sensing.

1.1 Quantum sensing
Quantum sensors representing the family of quantum

devices with some basic features, which make them very
specific to compare with classical ones [Degen, Rein-
hard, et al., 2017]:
1. The sensing system must have discrete energy levels;
2. The sensor must possess a ’turn on and get answer’
property, i.e. one can initialize the sensing process and
then be able to perform readout;
3. One must be able to manipulate the device coherently;
4. One must be able to engineer the interaction of the
sensor with an external physical quantity and to have
some response to that quantity.

The development of quantum sensing protocols has
come close to practical and even commercial implemen-
tation of position sensing, navigation, accelerometers,
gyroscopes; timing standardization; electro- and mag-
netometers; sensing for quantum computing; different
kinds of medical sensing and biomagnetic imaging; au-
tonomous vehicles, and consumer electronics [Degen,
Reinhard, et al., 2017].
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Such features of quantum sensing demand the spe-
cific adaptation of control algorithms, as it was done be-
fore for other quantum devices [Borisenok, 2021; James,
2021; Koch, Boscain, et al., 2022].

1.2 Nitrogen-vacancy centers in a diamond lattice
Here we focus on the particular type of quantum sen-

sors based on the nitrogen-vacancy (NV) centers in a di-
amond lattice. This type of sensor became a subject of
great interest during the last couple of years due to its
following interesting features [Roopini and Radhakrish-
nan, 2020]:
- It is characterized by extremely high fidelity of sensing.
This property is originated in the details of the interac-
tion of the individual nuclear spins of the intrinsic nitro-
gen atom and proximal carbon nuclei with the electronic
spin states, which makes each NV-center act as a small
’quantum register’.
- Its coherent properties persist virtually up to room tem-
perature.

For the details of the quantum sensing protocol, one
can refer [Wang, Tiwari, et al., 2024].

The semi-classical Tavis-Cummings model for N
NV centers considers the sensing elements as non-
interacting two-level quantum systems, distributed in-
homogeneously due to heterogeneous local magnetic
and strain environments. The dynamical system of or-
dinary differential equations corresponding to the model
contains the set of control parameters: the detunings
between the drive frequency and the cavity frequency
and between the drive frequency and NV transition fre-
quency, as well as the coefficients of the intrinsic relax-
ation rate, and of the coupling strength to a microwave
probe line.

1.3 The control goal
In this paper, we study the application of different feed-

back control algorithms (gradient methods, target attrac-
tor methods) to compare their pros and cons for effec-
tive control for nitrogen-vacancy-cavity quantum sens-
ing based on different choices of the control parameter
set. Usually, the sensing characteristic to be controlled
is chosen as a quantum fidelity [Jozsa, 1994] or quantum
Fisher information [Reilly, Wilson, et al., 2023].

As a control goal, we choose the response to the envi-
ronmental change:

r =
βout

βin
, (1)

where βin and βout are the input and output microwave
fields.

An alternative control goal option is to drive βout. In
both cases we focus n the stabilization of the control
goal.

1.4 Toy model for nitrogen-vacancy-cavity sensing
Here we develop a toy model for quantum sensing as

a simplification of the standard Tavis–Cummings sys-

tem. This model does not cover some principal details
of the sensing process: the intricate quantum dynamics
inherent to NV centers, relaxation processes, and deco-
herence.

We focus on the very basic properties of the controlled
system to study whether the feedback control algorithms
can drive the system successfully, or they must be suf-
ficiently reformulated. It allows us to concentrate on
the principle features of different feedback algorithms
without discussing many particular details of their re-
alization, including the experimental implementation.
We used a similar approach to control qubits, where
first we formulated a toy model of feedback algorithm
[Borisenok, Fradkov, et al., 2010], and later developed
the detailed model [Pechen, Borisenok, et al., 2022].

In the conclusion and discussion part, we make a com-
parison of alternative feedback algorithms.

2 Toy Model for Nitrogen–Vacancy–Cavity Quan-
tum Sensor

The hybrid quantum sensor based on NV-ensemble
of N centers in the doped diamond coupled to a high-
quality factor dielectric resonator has been implemented
in [Wang, Tiwari, et al., 2024]. In the frame of this
model, the sensing elements are considered as non-
interacting two-level quantum systems, distributed in-
homogeneously due to heterogeneous local magnetic
and strain environments.

2.1 Standard Tavis–Cummings system
The energetic structure of the NV-based quantum

sensor is quite sophisticated. The standard Tavis–
Cummings model for the discussed type of sensor is
given by the set of following dynamical equations for
the cavity field α, the spin coherence sj , and the excited-
state population pj :

dα

dt
= −

(
i∆+

κ

2

)
α− igs

∑
j

sj +
√
κc1βin ;

dsj
dt

= −
(
i∆j +

γ

2

)
sj − igs(1− 2pj)α ; (2)

dpj
dt

= −γppj + igs
(
sjα

∗ − s∗jα
)
.

Eq.(2) includes the set of frequencies: the driving fre-
quency ωd, the NV transition frequency ωj , and the cav-
ity frequency ωc, they define detunings: ∆ = ωd − ωc

and ∆j = ωd − ωj .
The relaxation parameters are represented by: the in-

trinsic relaxation rate κc, the coupling strength to a mi-
crowave probe line κc1, such that κ = κc+κc1; the spin
relaxation rate γ, the optical polarization rate γp (which
is considered to be uniform), and the uniform coupling
between each j-th spin with the cavity [Wang, Tiwari, et
al., 2024].
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2.2 Toy model for sensing
NV spins are polarized to the spin ground state using

continuous optical pumping [Wang, Tiwari, et al., 2024].
That forms a low entropy configuration, where the spin
ensemble serves as a cooling agent for the cavity mode
by collectively interacting with the microwave photons.

Based on that, let’s choose the case of
∑

j sj ≃ const,
such that the second term in the first Eq.(2) is virtually
a constant/ It means that we can eliminate this term by
rescaling the field α.

Additionally, we assume the detuning ∆ to be close to
0, and neglect the relaxation rate κ.

The control signal is chosen as the coupling parameter
to the microwave probe line:

u =
√
κc1. (3)

Then our toy model becomes:

dα

dt
= uβin ; (4)

βout = uα− βin .

We have to confirm that the model (4) does not re-
flect some important features of the experimental imple-
mentation of the nitrogen-vacancy centers in diamond.
First, it does not cover the intricate quantum dynamics
inherent to NV centers [Ho, Wong, et al., 2021]. We as-
sume here that the typical time scale of such dynamics
is much slower in comparison with the sensing process
itself [Yuan, Mukherjee, et al., 2024].

Second, different effects of noise and, particularly, de-
coherence, which is the most dominant magnetic field
noise source in diamond [Bauch, Singh, et al., 2020;
Park, Lee, et al., 2022], are not included in (4). The
theoretical and experimental research demonstrates that
decoherence strongly depends on the spin concentra-
tion: the decoherence decay is exponential for the high
spin concentration in the diamond, but it becomes non-
exponential for the low spin concentration [Hayashi,
Matsuzaki, et al., 2020]. Another possible way to sup-
press the quantum spin noise is the inserting so-called
π-rotations around the nuclear spin bath into the free
evolution [Chen, Qiu, et al., 2023]. In other words, in
our toy model, we assume quantum decoherence to be
essentially suppressed in one way or another.

3 Alternative Feedback Control Approaches
Among the variety of control algorithms let’s focus on

two alternative approaches: target attractor, or ’syner-
getic’ method, and on gradient algorithms.

3.1 Target attractor feedback
Target attractor (TA), or ’synergetic’, feedback has

been proposed in [Kolesnikov, 2012]. It is based on
forming in the dynamical system an artificial target at-
tractor, which locks exponentially fast dynamical tra-
jectories in its neighborhood. We developed this ap-
proach as a tracking algorithm for the NV-cavity sensor

in [Borisenok, 2024], and here we briefly reproduce our
main results (for the stabilization case) to compare them
later with the gradient methods.

For the control goal based on Eq.(1), let’s define the
target stabilization level βout,t, and then engineer the tar-
get attractor on the form:

dβout

dt
= − (βout − βout,t)

T
; (5)

with the positive constant T .
Then by (1) we obtain:

u =

√
1

βin

dβin

dt
, (6)

where βin ̸≡ 0.
By (6) one can observe the main handicap of the TA

algorithm: it is valid if

1

βin

dβin

dt
≥ 0 . (7)

Even if we represent the external fields as a real func-
tion (in the original model they are complex), they usu-
ally have components of harmonic functions like sin t
or cos t, or their products with exponents like exp(−t).
Thus, for practical implementation, the condition (7)
does not look to be realistic.

The reason for such features lies in the structure of
the attraction region for the dynamical trajectories. The
basin of the target attractor does not cover a full set of
the initial conditions and also does not correspond to the
entire possible variety of functions describing external
fields. All this makes the Kolesnikov synergetic feed-
back method of limited suitability for controlling quan-
tum sensing processes.

3.2 Gradient Algorithms
The gradient algorithms have already quite a success-

ful history of their application to quantum systems. Par-
ticularly, we should mention here the speed gradient
(SG) method [Fradkov, 2007], which recently has been
applied for the efficient control of qubit energy states
[Pechen, Borisenok, et al, 2022].

Nevertheless, although SG is extremely useful for clas-
sical applications, at the same time it is quite demanding
on the properties of dynamical systems. To guarantee the
achievement of the control goal, the control algorithm
for the system must satisfy to Fradkov–Pogromsky’s the-
orem [Fradkov and Pogromsky, 1998], which often is not
valid for quantum systems. Such cases we observed in
the models for quantum batteries and quantum sensors.

The other option for the gradient feedback as quan-
tum control could be the usage of a gradient descent
algorithm. Here we adopt a similar approach that we
developed for the superconducting qubit-based sensor
[Borisenok, 2023].
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3.2.1 Gradient stabilization for a constant input
field Let’s first study the case of constant βin.

For algebraic computation simplicity, we re-define
here the control signal (3) multiplying it by the cavity
field as:

η = uα. (8)

The new control signal can be now represented in the
form:

η =
1

βin

d

dt

(
α2

2

)
, (9)

and the second equation in (4) becomes:

βout = η − βin . (10)

If we drive the outcome field βout, let’s define the tar-
get βout,t, and apply the gradient algorithm in the form:

dβout

dt
= −Γ (βout − βout,t) . (11)

Here the constant Γ > 0. Then:

dη

dt
= −Γ (η − βin − βout,t) , (12)

with the solution:

η(t) = βin + βout,t + Ce−Γt , (13)

where

C = η(0)− βin − βout,t . (14)

Now by (9) we can restore:

α(t) =

√
2βin

[
(βin + βout,t) t−

C

Γ
e−Γt

]
, (15)

and

u(t) =
βin + βout,t + Ce−Γt√

2βin

[
(βin + βout,t) t− C

Γ e
−Γt

] . (16)

RHS(16) is constrained by:

βin

[
(βin + βout,t) t−

C

Γ
e−Γt

]
≥ 0, (17)

which for the constant chosen as C = 0 becomes:

β2
in + βinβout,t ≥ 0. (18)

It is much more realistic to compare with (7).
A similar result can be obtained for the stabilization of

r at the target level rt. We define the control algorithm
as:

dr

dt
= −Γr(r − rt) ; Γr = const > 0 . (19)

Then:

dη

dt
= −Γr [η − (1 + rt)βin] , (20)

and

η(t) = (1 + rt)βin + Cre
−Γrt . (21)

That implies:

α(t) =

√
2βin

[
(1 + rt)βint−

Cr

Γr
e−Γrt

]
, (22)

and

u(t) =
(1 + rt)βin + Cre

−Γrt√
2βin

[
(1 + rt)βint− Cr

Γr
e−Γrt

] , (23)

where

Cr = η(0)− (1 + rt)βin . (24)

Again, this form looks to be more natural for the real
shapes of the sensed fields.

In both cases (16) and (23), the initial conditions are
multiplied by the factor exp(−Γt) or correspondingly
exp(−Γrt), that makes the control algorithm to be prac-
tically non-sensitive to the initial condition set at the time
scales 1/Γ or 1/Γr.

3.2.2 Gradient stabilization for a time-dependent
input field In the case of time-dependent βin(t), the
profile of the control signal, of course, becomes more
complex.

Let’s derive it for the stabilization of βout. The same
(11) becomes:

dη

dt
=

βin

dt
− Γ (η − βin(t)− βout,t) . (25)

Then:

η(t) = e−Γt

[
η(0) +

∫ s

0

f(s)eΓsds

]
, (26)

where

f(t) =
dβin

dt
+ Γ (βin(t) + βout,t) . (27)

Let’s put η(0) = 0, then:

η(t) = e−Γt

∫ t

0

[Γ (βin(s) + βout,t)] e
Γsds . (28)
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After the separation of α and u:

α(t) =
√
2βin(t)η(t) , (29)

and

u(t) =

√
2βin(t)

η(t)
, (30)

with η(t) given by (28),
We observe here that for the time dependent input field

βin(t), the inequality:

βin(t)

η(t)
≥ 0 (31)

is not always valid. That could be a sign that our toy
model does not cover appropriately the time-dependent
case because the evolution of the microwave-driven field
stimulates sufficiently the dynamics of the spin variables.

Again, the initial conditions in (26) are multiplied by
the decaying exponent exp (−Γt), which makes the con-
trol algorithm practically to be not sensitive to the initial
conditions.

4 Conclusions and Discussions
The response to the environmental change in the cavity

quantum electromagnetic sensor based on the nitrogen-
vacancy centers in the diamond can be efficiently con-
trolled by the application of alternative forms of feed-
back algorithms.

For the feedback stabilization goal, the gradient meth-
ods look to be more appropriate to compare with the tar-
get attractor due to the specific features of the attractor
basin in the system. Also, the gradient methods are not
sensitive to the initial conditions of the system parame-
ters.

Different stages of the working cycles of quantum sen-
sors demand different parameters of optimization in the
model systems. That’s why it is so important for the fol-
lowing research to investigate tracking rather than sta-
bilization. It opens the gate for tracking different time
stages of the sensor operation.

For the following phase of research,the effects of spin
dynamics and decoherence must be considered in the
control model.

The other focus of our further investigation will be on
the problem of computational cost and the details of the
practical implementation of feedback algorithms.
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