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Abstract
In this paper we study the existence, uniqueness and

asymptotic stability of the periodic solutions for the
Lipschitz systemẋ = εg(t, x, ε). Classical hypotheses
in the periodic case of second Bogolyubov’s theorem
imply our ones. By means of the results established we
construct, for smallε, the curves of dependence of the
amplitude of asymptotically stable2π–periodic solu-
tions on parameters of a forced asymmetric oscillator.
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1 Introduction
In the present paper we study the existence, unique-

ness and asymptotic stability of theT–periodic solu-
tions for the system

ẋ = εg(t, x, ε), (1)

whereε > 0 is a small parameter and the function
g ∈ C0(R× Rk × [0, 1],Rk) is T–periodic in the first
variable and locally Lipschitz with respect to the sec-
ond one. As usual a key role will be played by the
averaging function

g0(v) =

T∫

0

g(τ, v, 0)dτ, (2)

and we shall look for those periodic solutions that starts
near somev0 ∈ g−1

0 (0).
In the case thatg is of classC1, we remind the pe-

riodic case of the second Bogolyubov’s theorem ([Bo-
golyubov, 1945], Ch. 1,§ 5, Theorem II) which repre-
sents a part of the averaging principle:det (g0)′(v0) 6=
0 assures the existence and uniqueness, forε > 0

small, of aT–periodic solution of system (1) in a neigh-
borhood ofv0, while the fact that all the eigenvalues of
the matrix(g0)′(v0) have negative real part, provides
also its asymptotic stability.
It was Mitropol’skii who noticed in [Mitropol’skii,

1959] that various applications require generalization
of the second Bogolubov’s theorem for Lipschitz right
hand parts. Assuming thatg is Lipschitz, g0 ∈
C3(Rk,Rk) and that all the eigenvalues of the ma-
trix (g0)′(v0) have negative real part Mitropol’skii de-
veloped an analog of the second Bogolyubov’s The-
orem proving the existence and uniqueness of aT–
periodic solution of system (1) in a neighborhood of
v0. The existence part of the Mitropol’skii’s result has
been extended to a wide class of continuous systems
in [Mawhin, 2005] by means of degree theory. On the
other hand stability of periodic solutions obtained via
Mitropol’skii’s theorem has been studied up to now for
particular situations only, we refer to [Glover, Lazer
and McKenna, 1989], where the Lipschitz members
of the two-dimensional system (1) are represented by
jumping nonlinearities and to [Buică and Daniilidis,
2007], where a certain continuity of the Clarke differ-
ential of (1) is assumed.
In the next section of the paper assuming thatg is

piecewise differentiable in the second variable we show
in Theorem 2 that Mitropol’skii’s conditions imply as-
ymptotic stability of aT–periodic solution of system
(1) in a neighborhood ofv0 without any additional as-
sumptions. In other words we show that Bogolyubov’s
theorem formulated above is valid wheng is not nec-
essaryC1. Theorem 2 follows from our even more
general Theorem 1 whose hypotheses do not use any
differentiability neither ofg nor ofg0.

2 Main results
Throughout the paperΩ ⊂ Rk is some open set and

for anyδ > 0 theδ-neighborhood ofv ∈ Rk is denoted
by Bδ(v0) =

{
v ∈ Rk : ‖v − v0‖ ≤ δ

}
. We have the

following main result.



Theorem 1. Let g ∈ C0(R × Ω × [0, 1],Rk) and
v0 ∈ Ω. Assume the following four conditions.

(i) For some L > 0 we have that
‖g(t, v1, ε)− g(t, v2, ε)‖ ≤ L ‖v1 − v2‖ for
anyt ∈ [0, T ], v1, v2 ∈ Ω, ε ∈ [0, 1].

(ii) For any γ > 0 there existsδ > 0 such that

∥∥∥
∫ T

0
g(τ, v1 + u(τ), ε)dτ − ∫ T

0
g(τ, v2 + u(τ), ε)dτ

− ∫ T

0
g(τ, v1, 0)dτ +

∫ T

0
g(τ, v2, 0)dτ

∥∥∥
≤ γ‖v1 − v2‖

for any u ∈ C0([0, T ],Rk), ‖u‖ ≤ δ, v1, v2 ∈
Bδ(v0) andε ∈ [0, δ].

(iii) Let g0 be the averaging function given by (2) and
consider thatg0(v0) = 0.

(iv) There exist q ∈ [0, 1), α, δ0 > 0 and a
norm ‖ · ‖0 on Rk such that ‖v1 + αg0(v1)
−v2 − αg0(v2)‖0 ≤ q‖v1− v2‖0 for anyv1, v2 ∈
Bδ0(v0).

Then there existsδ1 > 0 such that for everyε ∈ (0, δ1]
system (1) has exactly oneT–periodic solutionxε with
xε(0) ∈ Bδ1(v0). Moreover the solutionxε is asymp-
totically stable andxε(0) → v0 asε → 0.

When solutionx(·, v, ε) of system (1) with initial con-
dition x(0, v, ε) = v is well defined on[0, T ] for any
v ∈ Bδ0(v0), the mapv 7→ x(T, v, ε) is well defined
and it is said to be thePoincaŕe mapof system (1). The
proof of existence, uniqueness and stability of theT–
periodic solutions of system (1) in Theorem 1 reduces
to the study of corresponding properties of the fixed
points of this map.
In general it is not easy to check assumptions (ii)

and (iv) in the applications of Theorem 1. Thus we
give also the following theorem based on Theorem 1
which assumes certain type of piecewise differentiabil-
ity instead of (ii) and deals with properties of the ma-
trix (g0)′(v0) instead of the Lipschitz constant ofg0.
For any setM ⊂ [0, T ] measurable in the sense of
Lebesgue we denote bymes(M) the Lebesgue mea-
sure ofM.

Theorem 2. Let g ∈ C0(R × Ω × [0, 1],Rk) satisfy
(i). Let g0 be the averaging function given by (2) and
considerv0 ∈ Ω such thatg0(v0) = 0. Assume that

(v) given anyγ̃ > 0 there existδ̃ > 0 and M ⊂
[0, T ] measurable in the sense of Lebesgue with
mes(M) < γ̃ such that for everyv ∈ Beδ(v0),
t ∈ [0, T ] \ M and ε ∈ [0, δ̃] we have that
g(t, ·, ε) is differentiable atv and ‖g′v(t, v, ε) −
g′v(t, v0, 0)‖ ≤ γ̃.

Finally assume that

(vi) g0 is continuously differentiable in a neighborhood
of v0 and the real parts of all the eigenvalues of
(g0)′(v0) are negative.
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Figure 1. (a) A driven mass attached to an immovable beam via a

spring with piecewise linear stiffness, see e.g. [Kryukov, 1967], (b)

the jumping nonlinearityu 7→ u+.

Then there existsδ1 > 0 such that for everyε ∈ (0, δ1],
system (1) has exactly oneT–periodic solutionxε with
xε(0) ∈ Bδ1(v0). Moreover the solutionxε is asymp-
totically stable andxε(0) → v0 asε → 0.
For proving Theorem 2 we observe that the property

(v) implies (ii), while the property (vi) implies (iv).

3 An example
The differential equation for the coordinateu of the

mass attached via nonlinear spring to an immovable
beam drawn at Fig. 1 is written down as follows (see
[Kryukov, 1967])

mü + cu̇ + k1u + k2u
+ = f(t), (3)

wheref is a force applied to the mass in the vertical
direction.
In this section we apply Theorem 2 to find amplitudes

of asymptotically stable periodic solutions of the fol-
lowing equation

ü + εcu̇ + u + εau+ = ελ cos t , (4)

which is a form of equation (3), where the relevant co-
efficients are assumed to be small (see [Bovsunovskii,
2007]). The situation when the coefficient in front ofu̇
is small and that in front ofu+ is not has been studied in
[Glover, Lazer and McKenna, 1989]). The stability of
large amplitude periodic solutions in (4) was addressed
in [Fabry, 2007].
Some functionu is a solution of (4) if and only if
(z1, z2) = (u, u̇) is a solution of the system

ż1 = z2 ,
ż2 = −z1 + ε[−az+

1 − cz2 + λ cos t] . (5)

After the change of variables

(
z1(t)
z2(t)

)
=

(
cos t sin t
− sin t cos t

)(
x1(t)
x2(t)

)
,



system (5) takes the form

ẋ1 = ε sin t[a(x1 cos t + x2 sin t)++
+c(−x1 sin t + x2 cos t)− λ cos t],

ẋ2 = ε cos t[−a(x1 cos t + x2 sin t)++
+c(x1 sin t− x2 cos t) + λ cos t].

(6)

The corresponding averaged functiong0, calculated ac-
cording to the formula (2), is

g0(x1, x2) =
( −πc πa/2
−πa/2 −πc

)(
x1

x2

)
+

(
0
πλ

)
.

It can be easily checked that the unique zero ofg0 is

(
2aλ

a2 + 4c2
,

4cλ

a2 + 4c2

)

and the eigenvalues of(g0)′ are−πc ± iπa . The am-
plitude of this zero is

A =
2|λ|√

a2 + 4c2
.

To apply Theorem 1 it remains to observe the following
proposition.
Proposition 1. Letv0 ∈ R2 \ {0}. Then the right hand
side of (6) satisfies (ii) for anyc, a, λ ∈ R.
The main result of this section can be now summa-

rized as follows.
Proposition 2. Assume thatc > 0 and A =
2|λ|/√a2 + 4c2 6= 0 and take an arbitraryR > 0.
Then for eachε > 0 sufficiently small, equation (4) has
an asymptotically stable2π-periodic solution whose
amplitude goes toA as ε → 0. Moreover, there are
no other2π-periodic solutions with amplitudes in the
interval [1/R,R].
By Theorem 2 the curves of dependence of the ampli-

tude of asymptotically stable2π-periodic oscillations
in (4) upon the parameters are drawn in Fig. 2. Partic-
ularly one can see that this amplitude tends to+∞ as√

a2 + 4c2 → 0 andλ ∈ R \ {0} is fixed.
The same considerations like in Propositions 1 and 2

are applied in [Buic̆a, Llibre and Makarenkov, 2008]
for detecting amplitudes of asymptotically stable pe-
riodic solutions in the forced nonsmooth van der Pol
oscillator (see [Hogan, 2003]).
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Figure 2. The curves of dependence of the amplitude of asymp-

totically stable2π-periodic oscillations in (4) upon the parameter

a ∈ R constructed forλ = 1 and distinctc’s.
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