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Abstract— We study the effect of a time-delayed feedback
within a generic model for a saddle-node bifurcation on a
limit cycle. Without delay the only attractor below this global
bifurcation is a stable node. Delay renders the phase space
infinite-dimensional and creates multistability of periodic orbits
and the fixed point. Homoclinic bifurcations, period-doubling
and saddle-node bifurcations of limit cycles are found in
accordance with Shilnikov’s theorems.

I. INTRODUCTION

Time-delayed feedback was originally proposed in the
context of chaos control [1] as an alternative to the famous
OGY method developed earlier by Ott et al. [2]. The idea was
to achieve stabilization of unstable periodic orbits (UPOs) by
adding, to a chaotic system, a control force in the form of
the difference between a system variable at time t and at a
delayed time t− τ . This method proved to be very powerful
and has been successfully applied to various physical systems
since then [3]. The scheme was improved by Socolar et al.
[4], and other variants have been elaborated [5], [6], [7], [8],
[9], and applied also to stochastic systems [10], [11], [12].
Moreover, elegant analytical theories [13] were developed
supporting, thus, numerical findings. Apart from the practi-
cally relevant application of time-delayed feedback, e.g. to
lasers [14], the interest lies highly on the mathematical aspect
of the problem. Delay differential equations are difficult to
handle. The delay renders the system infinite-dimensional
and the interplay with nonlinearity uncovers complex dy-
namic behaviour. Delay-induced multistability was already
predicted in the first paper by Pyragas [1]. The idea that
time-delayed feedback may not only be used for controlling
a system but also for creating new dynamics is not new.
Nevertheless, the investigation of delay-induced bifurcations
and multistability is still a growing field [15], [16] with
applications to the logistic map as well as to laser equations
[17], [18].

II. THE MODEL

Here we study the influence of time-delayed feedback
in a generic model representative for excitable dynamics
[19], [20], [21]. The behaviour of the system without delay
is governed by a global bifurcation, namely a saddle-node
bifurcation on a limit cycle (saddle-node infinite period bifur-
cation, SNIPER), that takes place when a certain parameter
exceeds a threshold. Such a bifurcation was first observed
experimentally in a semiconductor device [22], and also
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encountered in various semiconductor models, e.g. for Gunn
domains [23], superlattices [24], [25], or lasers [26], [27],
[28]. Excitability, naturally, yields the system highly sensitive
to fluctuations and therefore this system has served perfectly
as an example for coherence resonance [29] shown in the
seminal paper by Hu et al. [30] and [20] over ten years
ago. In this paper we do not consider the effect of noise
but extend the generic model by incorporating time-delayed
feedback according to the Pyragas scheme. The equations
are the following:

ẋ = x(1− x2 − y2) + y(x− b)−K(x− xτ ) (1)
ẏ = y(1− x2 − y2)− x(x− b)−K(y − yτ ). (2)

Here x and y denote the variables at time t, while xτ and
yτ the delayed ones at time t− τ , with τ and K being the
delay and control strength, respectively. This kind of control
is called diagonal because the control force may be written
in the form of a unity matrix. In the absence of delay, i. e.
K = 0, b plays the role of the bifurcation paramater. In polar
coordinates x = r cosϕ, y = r sin ϕ Eq. (1) with K = 0
reads

ṙ = r
(
1− r2

)
(3)

ϕ̇ = b− r cos ϕ (4)

When b < 1 there are three fixed points: an unstable focus
at the origin and a pair of a saddle-point and a stable
node on the unit circle with coordinates (b,+

√
1− b2) and

(b,−√1− b2), respectively. The latter collide at b = 1 and a
limit cycle r = 1 is born. Above but close to the bifurcation,
the frequency f of this limit cycle obeys a characteristic
square-root scaling law f ∼ (b− 1)1/2.

III. LINEAR STABILITY ANALYSIS

We prepare the system slightly below the bifurcation (b =
0.95) and switch on the control. The first question that arises
concerns the stability of the three fixed points and how this
changes, or not, due to delay. For this, we perform a standard
linear stability analysis and derive the characteristic equation
for the roots, Λ, which determine the stability of the fixed
points. For the unstable focus, the characteristic equations is:

(1−K + Ke−Λτ − Λ)2 + b2 = 0. (5)

Due to the presence of the delay, Eq. (5) has infinitely
many solutions. However, the stability of the fixed points is
determined by a finite number of critical roots with largest
real parts. Using the Lambert function W , which is defined



as the inverse function of g(z) = zez for complex z [31],
[32], the solution of Eq. (5) can be expressed as:

Λ =
1
τ

W [Kτeτ(K−1±b)]−K + 1∓ ib. (6)

In the case of the saddle and the node, the characteristic
equation can be factorized into two equations:

Λ + K + 2−Ke−Λτ = 0 (7)

Λs,n + K ∓
√

1− b2 −Ke−Λs,nτ = 0, (8)

with solutions:

Λ1 =
1
τ

W [Kτeτ(2+K)]− 2−K (9)

Λ2
s,n =

1
τ

W [Kτeτ(K∓√1−b2)]−K ±
√

1− b2.(10)

The superscripts ’s’ and ’n’ denote the saddle (upper sign)
and the node (lower sign), respectively.

Figure 1 shows the real parts of the eigenvalues Λ as
a function of τ for a fixed value of K for all three fixed
points. One may see the eigenvalues of the uncontrolled
system at τ = 0, and their interaction with the delay-induced
modes (blue) with increasing τ . In all three cases, control
is unable to change the stability of the fixed point: in the
case of the unstable focus, the mode with the largest real
part (red) tends to very small values with increasing delay,
remaining however positive. The same holds for the unstable
mode of the saddle. Symmetric behaviour is observed for the
stable modes of both saddle and node: they tend to zero as
a function of τ but remain negative. The picture does not
change qualitatively even for other values of K and therefore
one might conclude that no delay-induced bifurcations of
fixed points take place.
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Fig. 1. Real parts of the complex eigenvalues Λ as a function of τ , for
fixed K = 1 and b = 0.95. For the (a) unstable focus, (b) the saddle point
and (c) the stable node. The modes emerging from the uncontrolled system
and the delay-induced modes are marked red and blue, respectively.
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Fig. 2. (a) Two dimensional projection of the phase space below the
homoclinic bifurcation (K = 0.335). (b) Homoclinic orbit (red) achieved
at Kc = 0.3401. (c) Delay-induced limit cycle (red) above the homoclinic
bifurcation (K = 0.3438). (d) Scaling of the oscillation period T above
but close to the critical point Kc (crosses: simulation data, solid line: linear
fit). Full and open circles mark stable and unstable fixed points, respectively.
Parameters: b = 0.95, τ = 3.

IV. GLOBAL BIFURCATION ANALYSIS

However, the above local analysis gives no information
on the global changes in phase space that delay potentially
induces. A numerical investigation shows, in fact, that there
exists bistability in a certain parameter regime in the K-
τ plane: trajectories starting close to the saddle point are
attracted by a delay-induced limit cycle, whereas trajectories
starting elsewhere end up in the stable node. Keeping τ = 3
fixed we find the critical value Kc of K for which this
delay-induced limit cycle is born and observe a scaling
T ∼ ln |K −Kc| in the period T of the corresponding
oscillations, typical for the case of a homoclinic bifurcation.
In Fig. 2 phase portraits of the system below, at and above
the bifurcation are shown. Trajectories with different initial
conditions are shown: one starting from the vicinity of the
unstable focus in the origin (blue) and one from the vicinity
of the saddle (red). Bistability is revealed in Fig. 2(c) where
two attractors (the stable node and the delay-induced limit
cycle) coexist. The ’kink’ in the trajectory shortly before the
loop closes is due to the control: the control force starts
acting at t = 3 when the system is still moving on the
slow part of the unit circle. Therefore, its effect is not so
noticeable. As the system moves faster the control force
attains higher values and the trajectory starts deviating from
its deterministic path at t = 13. This deviation becomes
large at t = 18 where the trajectory, shortly before settling
in the stable node, appears to be ”attracted” to the saddle,
resulting in this ’kink’ in the x − y projection. Also, as K
approaches the critical value, the trajectory passes closer and



closer to the saddle on its way to the stable node. This ends
in a homoclinic orbit at K = Kc, (Fig. 2(b)) from which
a periodic orbit is generated (Fig. 2(c)). The period of the
born limit cycle scales according to T ≈ −Λu

−1ln|K−Kc|,
where Λu is the real part of the least unstable eigenvalue
of the saddle point (i. e. , the one closest to the imaginary
axis). One may calculate this from Eq. (9) and find Λu

−1 =
0.1739−1 = 5.75. This is in rather good agreement with the
slope of the solid line in Fig. 2(d) which equals 5.35.

In the following we use a bifurcation continuation tool
[33], [34] and follow the homoclinic bifurcation in the K−τ
plane. The produced bifurcation curve can be seen in Fig. 3
(left). It consists of two main curves: one running through
points A − E and a second tongue-like curve. In the white
area the system is monostable (stable fixed point) while in
the yellow area a delay-induced periodic attractor is born via
a homoclinc bifurcation marked by the red curves.

Fig. 3. Curve of homoclinic bifurcations (red) in the K − τ plane (left).
A - E labels various points with homoclinic orbits, which are shown in the
x−y phase plane in the panel on the right. Delay-induced limit cycles exist,
in addition to the stable fixed point, in the yellow area. The blue dashed
curve separates the regions σ0 < 0 (left) and σ0 > 0 (right)

At this point one should emphasize the role of the saddle-
point: due to the delay, the saddle possesses no longer two
distinct eigenvalues (one positive, i. e. unstable, and one
negative, i. e. stable) but infinitely many. Moereover, complex
eigenvalues come into play as well. The eigenvalues, how-
ever, that determine the behaviour of the colliding homoclinic
orbit, are the leading ones, i. e. those closest to the imaginary
axis. In Fig. 4 one can see the eigenvalue spectrum for two
parameter values on the homoclinic curve and notice that
the leading eigenvalues of the saddle (red) are a positive
real eigenvalue, as in the original uncontrolled system, and
a complex conjugate pair with negative real parts, generated
by the delay. This means that the saddle may turn into a
saddle-focus for certain values of K and τ . Homoclinic orbits
attached to a saddle-focus approach the fixed point in an
oscillating manner. This explains the phase portraits in Fig.
3 (right) which become more and more complicated as K
increases.

From the above, it is clear that the two basic ingredients
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Fig. 4. Spectra of the eigenvalues Λ of the saddle for two points on the
homoclinic bifurcation line: (a) K = 0.3401, τ=3 (B in Fig. 3) and (b) K =
0.57, τ = 7.28 (E in Fig. 3). The saddle quantity σ0 = Re(Λs)+Re(Λu)
is negative in (a) whereas in (b) it is positive. (b = 0.95)

responsible for the delay-induced dynamics in our system
are the homoclinic orbits and the saddle-foci. The theory of
homoclinic bifurcations for ordinary differential equations
has been well developed [35], [36], [37]. As already men-
tioned, global bifurcations are strongly related to excitability
and therefore one expects to encounter them in excitable
systems. Various physical systems such as modulation-doped
semiconductor heterostructures [38], semiconductor lasers
[27], [28], neuron models [39] and chemical systems [40]
have been studied in this respect, both theoretically and
experimentally. On the other hand, less work has been
carried out for systems with delay undergoing such nonlocal
bifurcations [41]. It is therefore appropriate to analyze a
generic system like the one studied here which, despite
its simplicity, exhibits rich delay-induced dynamics with a
homoclinic bifurcation as key component.

V. DELAY-INDUCED MULTISTABILITY

In what follows we will apply the theorems on homoclinic
orbits connecting to saddle-foci as developed by Shilnikov
[35]. According to them, the so-salled saddle quantity is
crucial for the homoclinic bifurcations occurring in high-
dimensional systems. The saddle quantity is defined as σ0 =
Re(Λs) + Re(Λu), where Λs and Λu are the leading stable
and unstable eigenvalues, respectively. Shilnikov proved,
among other, that negative σ0 results in the birth of a unique
stable limit cycle from a homoclinic orbit. On the other hand,
for σ0 > 0, a wide variety of homoclinic bifurcations may
occur, some of which involve infinitely many periodic orbits
in the vicinity of the homoclinic orbit. The green dashed
curve in Fig. 3 shows the condition σ0 = 0. Along the
homoclinic bifurcation line in Fig. 3 the saddle quantity
changes sign, thereby allowing for both scenarios to take
place. Figure 4 shows the eigenvalue spectra for two different
points on the bifurcation line corresponding to negative and
positive saddle quantities, respectively.

In the following, we restrict ourselves to a fixed value of
τ = 7 and reveal multistability beyond the homoclinic bi-
furcation. For τ = 7, a homoclinic bifurcation takes place at
K = 0.17145 (point A in Fig. 3). In this case σ0 = −0.0116,
and the bifurcation creates one stable limit cycle, with Flo-
quet multipliers within the unit circle (inset of Fig. 5(a) ). The
period T of this limit cycle increases monotonically as the



0.17145 0.17148 0.17151
K

40

42

44

46

48

50

T

0.18 0.19 0.2 0.21 0.22
K

30

35

40

45

50

T-2 -1 0 1 2
Re(µ)

-2

-1

0

1

2

Im
(µ

)

-2 -1 0 1 2
Re(µ)

-2

-1

0

1

2

Im
(µ

)

(a) (b)

F

PD

F

F

F

PD

PD

PD

FPD

h

Fig. 5. (a) Period T of limit cycle born in a homoclinic bifurcation
at (K, τ) = (0.17145, 7) (point A in Fig. 3, σ0 < 0). (b) Period T of
limit cycles in the multistable regime at (K, τ) = (0.213, 7) (point Z in
Fig. 3, σ0 > 0), undergoing infinitely many fold (F) and period-doubling
(PD) bifurcations, before ending in a homoclinic orbit h for T → ∞ at
K = 0.213. Solid blue and red dashed lines denote stable and unstable limit
cycles, respectively. The insets show the two leading Floquet multipliers of
the periodic orbit µ1 = 1 (green) and µ2 (blue) with K as a parameter in
(a), and T as a parameter in (b), in the complex plane. b = 0.95

bifurcation point is approached (Fig. 5(a)). Moving further
along τ = 7 other homoclinic bifurcation curves are crossed,
e. g. at K = 0.213 (Fig. 5(b), cf. point Z in Fig. 3). There,
the saddle quantity is positive (σ0 = 0.0023, calculated
analytically from Eq. (10)), and the picture is much more
complicated: an infinite number of bifurcations take place,
which are related to saddle-node (fold) bifurcations of pairs
of stable and unstable limit cycles, and additional period-
doubling (flip) bifurcations of the stable limit cycles. The
dependence of the period T of the limit cycles upon K is
a nonmonotonic multivalued function, whose turning points
are associated with saddle-node bifurcations. In between the
fold bifurcations of the stable limit cycles, pairs of forward
and inverse period doubling bifurcations occur. In the insets
of Fig. 5 the trivial Floquet multiplier µ1 = 1 and the leading
Floquet multiplier µ2 of the periodic orbit are plotted. It can
be seen how µ2 changes as T is varied along the multivalued
function in the main figure, showing how fold and flip
bifurcations occur, at µ1 = 1 and µ1 = −1, respectively.
One should also expect other bifurcations near the critical
point due to secondary homoclinic orbits which are beyond
the scope of this paper.

VI. CONCLUSIONS

In conclusion, we have presented a mechanism for delay-
induced multistability in a system near a global bifurcation.
In addition to the fixed point attractor which the uncontrolled
system already possesses, a time-delayed feedback in the
form of Pyragas difference control induces one or more co-
existing limit cycle attractors. Depending upon the feedback
control strength K and the delay time τ , either a single stable
limit cycle is born in a homoclinic global bifurcation, or an
infinite number of (stable and unstable) periodic orbits is
induced undergoing a rich menagerie of bifurcation scenarios
including period doubling and fold bifurcations. We have
shown that the key ingredient in the observed dynamics is
a homoclinic orbit connected to a saddle-focus created by

delay. A bifurcation continuation in the K − τ plane was
performed. Moreover, we were able to verify Shilnikov’s
theory of homoclinic bifurcations in a certain parameter
regime. The excitable nature of the system and the infinite-
dimensional phase space, due to delay, appear to play a
crucial role in the induced homoclinicity.

These results are interesting also from the point of view of
applications, since our generic model is representative for a
wide range of real-world systems. For instance, the transition
from stationary to moving field domains in semiconductor
superlattices has been shown to be associated with a saddle-
node bifurcation on a limit cycle as described by Eq.(1) at
K = 0 [25], and time-delayed feedback control can also be
realized in this system [9]. Already without delay, this system
has been noted for its high multistability of stationary domain
states [42], [43], [44], and bistability or higher multistability
has been found in many other semiconductor nanostructures,
see e.g. [45], [46].
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