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Abstract 
A class of affine nonlinear SISO systems with 
relative order of the equivalent input-output form 
independent from external unmatched disturbances is 
formalized. For this class of systems, the methods for 
the synthesis of a multifunctional tracking system 
under the conditions of parametric uncertainty of the 
control plant and incomplete measurements have 
been developed. For information support of 
discontinuous control, an original method of reduced 
observer synthesis has been developed. The observer 
evaluates mixed variables (combinations of state 
variables, external disturbances and their derivatives) 
according to measurements the tracking error only. 
The simulation results of the designed algorithms for 
an inverted pendulum under conditions of uncertainty 
are given.  
 
Key words 
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1 Introduction 
   The paper deals with nonlinear systems of automatic 
control with single input and single output (SISO 
systems) under the influence of external, unmatched 
disturbances and parametric uncertainty. The tracking 
problem of the output variable is considered under the 
assumption that only the tracking error is available for 
direct measurements. The synthesis of the invariant 
tracking system under these conditions is non-trivial 
task and requires the involvement and development of 
special methods. Standard methods of compensation 
or suppression of uncertainties are not directly 
applicable here, since they require the fulfillment of 
the matching conditions [Isidori, 1995; Nikiforov, 
1998; Kvaternic and Lynch, 2011] and others. 
Therefore, the main role in solution of this problem is 
given to methods of informational support of the basic 
control law. In conditions of incomplete 
measurements, observers of state variables and 

disturbances are used for these purposes. In the 
classical formulation parametrically determined 
models of the control plant and external disturbances 
are required [Wonham, 1979] for the observers 
realization. However, adequate modeling of 
disturbances under constantly changing external 
factors seems to be an almost irresolvable problem. 
   In the nonlinear SISO system with unmatched 
disturbances, the problem of independent estimation 
the non-measurable variables of the state vector and 
external disturbances has no solution without 
expansion the state space by introducing dynamic  
models that generate external disturbances. Assuming 
that external disturbances are sufficiently smooth and 
is bounded by time functions, in this paper we use a 
method in which the mathematical model of a control 
plant is represented in the canonical form of input-
output with respect to mixed variables (combinations 
of state variables, external disturbances and their 
derivatives) [Utkin, Krasnova and Akhobadze, 2008; 
Utkin V.A and Utkin A.V., 2014; Krasnova and 
Mysik, 2014; Krasnova and Utkin, 2016]. Such 
approach does not require direct and inverse changes 
of variables, since control and observation problems 
are solved with respect to the same variables of the 
new coordinate basis.  
   In Section 2 a class of nonlinear affine systems with 
the invariance of the canonical form of input-output is 
formalized. In this form, the properties of complete 
controllability and observability inherent in the 
unperturbed system are preserved with the transition 
to a new coordinate basis of mixed variables. Mixed 
variables are formed by transformation of state 
variables with affine appearance of external 
disturbances and their derivatives. The equivalent 
input-output system is obtained by sequent 
differentiating the tracking error. It is essential that in 
the obtained canonical form the matching conditions 
are satisfied. The basic law of discontinuous control is 
synthesized with respect to mixed variables, and 



 

ensures the stabilization of the tracking error. 
Stabilization of errors is invariant to external 
disturbances and the uncertainty of the  multiplier term 
before the control input.  
   The main result is presented in Section 3, where a 
reduced observer of mixed variables is introduced . 
The procedure for synthesis of linear corrective 
actions with saturation is formalized, and the method 
of separation of movements in the space of 
observation errors is realized. Section 4 presents the 
simulation results of the developed algorithms for 
electromechanical control system operating under 
uncertainty conditions. 
   
2 Canonical form with allowance for disturbances 
   The nonlinear affine SISO systems presented in the 
triangular form [Krasnova and Utkin, 2016] is 
considered 
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where n
n RXxxx ⊂∈= T

1 )...,,(  is the state space 
vector, Ru ∈  is the control, RXtx ⊂∈ 11 )(  is the 
output (measured and controlled variable), 

s
s Rtη...tηtη ∈= T

1 ))(,),(()(  is the vector of external 
disturbances, the components of )(tη  are assumed to 
be unknown smooth bounded functions in time with 
bounded derivatives of order up to )1( −n :  

 
.,1,1,0

,0,0const)()(

sjni

tNtη ij
i
j

=−=

≥>=≤
 (2) 

   The functions )...,,( 11 +ii xxf  and the elements of 

vector-lines s
ii Rxxq ×∈ 1

1
T )...,,(  are continuously 

differentiable with respect to all their arguments at 
least than in −  times and  
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x
xxf

, 1,1 −= ni , (3) 

 .0)( ≠xb  (4) 
The conditions (3), (4) and their analogues below are 
of a local nature and are satisfied in an open, bounded 
working area of variables variation 

0)( ≥∀⊂∈ tRXtx n , which is determined by the 
process technology. At the same time, it is assumed 
that in system (1) all functions if , T

iq , ni ,1= , )(xb  
have undefined parameters, but at the same time, for 
all admissible ranges of parameters variations the 
structural properties (3) – (4) remain unchanged. 
 

   The problem statement is to synthesize feedback on 
the basis of the state and external disturbances, 
ensuring the tracking of the output variable )(1 tx  for a 
reference signal RXtg ⊂∈ 1)( . The reference signal 
is assumed to be smooth, bounded time function with 
bounded derivatives: 
 0const)()( >=≤ i

i Gtg , 0≥t , ni ,0= . (5) 

  In most papers on tracking systems, the control plant 
is considered to be systems (1) with matched 
disturbances  
 0)...,,( 1

T ≡ii xxq , 1,1 −= ni , (6) 
for which the expressions (3) are conditions for the 
local observability of the state vector variables with 
respect to the output, and the expressions (3) – (4) are 
the conditions of controllability [Isidori, 1995; 
Fradkov, Miroshnik and Nikiforov, 1999]. Due to the 
triangular composition of the arguments of 
functions 1,1),...,,( 11 −=+ nixxf ii , such system is a 
carrier of the input-output structure with a relative 
degree n . Thus, for a given system there is the 
coordinate transformation of local variables to a 
canonical form in which the output 1x and the input 
u with a non-zero gain is separated by integrators: 
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   The canonical form (7) is the standard basis for the 
synthesis of tracking and observation systems, where 
the problems of ensuring invariance with respect to 
matched disturbances are solved depending on the 
type of uncertainty by suppressing or compensating 
them. 
   To synthesize the basic control law for the output 
variable of system (1) with unmatched disturbances, it 
is expedient to use the canonical representation with 
respect to mixed variables (combinations of state 
variables, external disturbances and their derivatives)  
[Utkin, Krasnova and Akhobadze, 2008; Utkin V.A 
and Utkin A.V., 2014; Krasnova and Mysik, 2014; 



 

Krasnova and Utkin, 2016]. This approach to the 
synthesis problem determines the requirements for the 
class of admissible systems (1), which are given in the 
following lemma.  
   Lemma 1. If the conditions (3), (4) in system (1) are 
fulfilled and the elements of vector-lines s

i Rq ×∈ 1T , 

1,1 −= ni ) are the constants (including zero) and / or 
do not contain any arguments other than  
 )...,,( 1

T
ii xxq , 1,1 −= ni , (8) 

then the system (1), (3), (4), (8) is the carrier of the 
input-output structure in the coordinate basis of mixed 
variables with relative degree n .    
   Proof. To obtain the canonical form, it is necessary 
to differentiate the first equation of the system (1) 
( 1−n ) times. In contrast to the system with matched 
disturbances (6), this process generates the derivatives 
of external disturbances up to the ( 1−n ) order. 
Taking into account the notation (7), we have:  
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and the system (1), (3), (4), (8) can be represented in 
the canonical form  
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   The presence of external, unmatched disturbances 
with input channels (8) does not affect the fulfillment 
of the conditions 0/ 1 ≠∂∂ +ii xh , 1,2 −= ni .    
Consequently, the transformation to mixed variables is 
diffeomorphism. 

In the canonical system (9), the control input appears 
only in the last, n -th equation, the coefficient before 
control )(xb  is not equal to zero and does not depend 
on external disturbances. Thus, the relative degree of 
system (1) with unmatched disturbances is n . Lemma 
1 has been proved.  
   Thus, the class of non-linear affine systems (1), (3) 
(4) was single out in which the relative degree 
inherent in a system with matched disturbances (6) 
does not change when unmatched disturbances appear, 
if condition (8) is satisfied.  
   Note that if conditions (8) are not satisfied, then in 
the process of obtaining of the canonical form, an 
early appearance of control in the i  - th ( 1,2 −= ni ) 
equation with a multiplier depending on the 
disturbance is possible. Then the relative degree 
changes, and the question of controllability remains 
open. 
   If conditions (8) are satisfied in the new coordinate 
basis of the system (9), the mixed variables  
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are observable with respect to the output 1x . The 
system is controllable, and external disturbances and 
their derivatives belong to the control space. This 
allows us to apply to the system (9) well known 
methods of ensuring invariance for solving the control 
problems of the output variable. 
   To solve the tracking problem, one can obtain a 
canonical form with respect to the tracking error 

gxe −= 11 and its derivatives 

 1,1,),...,( )(
111 −=−+= ++ nigqxxhe i

iiii . (10) 
   By virtue of (10), we obtain an input u - output 1e  
system in which the structural properties of 
observability and controllability are preserved and 
which is the basis for further constructions:  
 ,)(),(;1,1,1 uxbtxeniee nii +=−== + ψ&&  (11) 

where )(),()(),( ngxqxhtx −+= ηψ . In system (11) 
nT

n Reee ∈= )...,,( 1  is the state vector, )(),( ngxq −η  
is the vector of external disturbances.  Taking into 
account (2)–(5), we assume that for admissible 
variations of the parameters and ,)( nRXtx ⊂∈∀  

0≥t  we have the estimates  

 ,),( Ftx ≤ψ  ,)(0 bxbb ≤≤<  (12) 

ii Ete ≤)( , ,,1 ni =  

where iE , F , b , b are known constants, obtained 
from technological limitations for the “worst” case. 
The sign )(xb  is a constant and known. 



 

   The basic law of combined control that compensates 
the external disturbances [Krasnova and Utkin, 2016], 
in this case is not realized due to the uncertainty of the 
multiplier )(xb .  
   To ensure the invariance to the uncertainties, we will 
use the "force" methods of suppressing them. 
   Focusing on a practically significant class of 
electromechanical systems, in which the control action 
has a known discontinuous character, the following 
basic control law is used 
 ,sgn)(sgn sxbMu ⋅−=  (13) 

 ,... 1111
T

nnn eecececs +++== −−  (14) 
where 0const >=ic , the roots iλ  of the equation 

0... 12
2

1
1 =++++ −

−
− ccc n

n
n λλλ  have negative real 

parts 0Re <iλ   1,1 −=∀ ni , 0const >=M , )sgn(⋅  
is a sign function [Utkin, 2009]. 
   We find the lower bound for choosing the amplitude 
of discontinuous control from a sufficient condition 

0<ss& . [Utkin, Guldner and Shi, 2009]. By virtue of 
(11)–(14), we have: 
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   With the amplitude chosen on the basis of (15) for a 
finite time  
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on the surface 0=s  in space nR  there will be appear 
a sliding mode. When stt > the dynamic order of the 
system (11) equal to n  decreases to )1( −n .  
Expressing the variable 1111 ... −−−−−= nnn ecece  from 
equality 0=s  (14) and substituting it in (11), we have 
a stable system.  
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where the choice ic ,  1,1 −= ni  provides the desired 
rate of convergence of the tracking error 0)(lim 1 =

∞→
te

t
.  

  For realization of the basic law of combined control 
(13), current estimates of mixed variables (10) are 
required. To solve this problem, the next section 
presents an original method for synthesizing a reduced 
observer for mixed variables, in which the method of 
separation of motions is also realized. 

3 Synthesis of the observer of mixed variables 
   Our goal is to create a multifunctional tracking 
system that can support various modes of operation of 
the control plant without reconfiguring the feedback 
parameters. The analytical form of the control action 
is not introduced. It is assumed that only its current 
values )(tg  are observed. Derivatives of the reference 
signal are unknown, but are limited. In inequalities 
(5), the maximum admissible estimates for all possible 
modes of operation are laid. Only the tracking error 

)()()( 11 tgtxte −=  is measured directly.   To realize 
(13) - (14) and estimate the mixed variables (10), we 
construct a reduced order )1( −n  observer on the basis 
of system (11)  
 ,;2,1, 111 −−+ =−=+= nniii vznivzz &&  (17) 

where 1
11 )...,,( −

− ∈= nT
n Rzzz  is the state vector, iv  

( 1,1 −= ni ) are corrective actions of observer. 
Corrective actions are formed on the basis of 
measurements )(1 te so as to ensure the stabilization of 
the system with respect to observation errors 

iii ze −=ε , 1,1 −= ni .  By virtue of (11), (17), the 
system takes the form  
 ,;2,1, 111 −−+ −=−=−= nnniii veniv εεε &&  (18) 
where )(ten  is supposed to be limited  external 
influence (12) 
   The effective method for estimating immeasurable 
state variables and external influences without 
introducing their dynamic models is to construct a 
state observer (17) with discontinuous corrective 
actions [Krasnova and Kuznetsov, 2005; Utkin, 
Krasnova and Akhobadze, 2008; Utkin V.A and Utkin 
A.V., 2014; Krasnova and Utkin, 2016].  The 
organization of sliding modes is carried out in the 
space of observation errors. But in the 
multidimensional case, the realization of such 
algorithms on the on-board computer can lead to the 
emergence of non-ideal sliding modes. This leads to 
inadequate quality (non-smoothness) of the 
reconstructed signals and undesirable effects in the 
realization of discontinuous control (13).  For this 
reason, in systems with discontinuous control it is 
recommended to use observers with continuous 
corrective actions. Advantages of observers on sliding 
modes can be ensured in the pre-limit situation by 
using of so-called S-shaped continuous corrective 
influences [Teel, 1996; Krasnova and Mysik, 2014].  
For reducing computational load of control algorithms 
in this paper the method of synthesis of correction 
actions on the base of functions with saturation is 
proposed. This approach provides solution of 
observation problem with prescribed accuracy. In 
comparison with linear observer with high-gain 



 

coefficients [Khalil and Praly, 2014], the procedure of 
state space expansion of the observer for estimation 
external disturbances is omitted. The main idea is to 
provide in system (18) stabilization of estimation 
errors and its derivatives with given accuracy in finite 
time 0>T . Then for 0>T , the observer variables 
converge to small vicinity of unmeasured 
interconnected variables )()( tetz ii ≈ , 1,2 −= ni , and 
the estimation )()(1 tetv nn ≈−  can be calculated from 
steady state equation 011 ≈−= −− nnn veε& . 
   Lemma 2. If in system (18) with correction actions 
in the form of sat-functions 
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The initial conditions and variable )(ten  are bounded 
by known constants 
 ii E≤)0(ε , 1,1 −= ni , nnn EFte =≤)( , (20) 
then for all an arbitrary small 0, >Tδ  there are 

positive real constants ∗∗
ii lM ,  such, that :, ii lM∀  

∗> ii MM , ∗> ii ll , 1,1 −= ni  the following 
inequalities are fulfilled 
 ,)( δε ≤ti  1,1 −= ni , (21) 

.)()( 1 Tttvte nn ≥∀≤− − δ  
   Proof. Let us split the time period ];0[ T  into 

)1(2 −n  segments with points  
Ttttt nn =<<<<< −− 223221 ...0 .  

Assuming that }...,,min{ 11 −<< nEEδ , the amplitudes 

0>iM  ( 1,1 −= ni ) of correction actions (19) are 
chosen in such a way to provide convergence to linear 
zone of correction actions in finite time from top to 
bottom: 
 ,,/1)( 111 ttlt >≤ε  121,/1)( −+ >≤ iii ttltv . (22) 

The parameters 0>il  ( 1,1 −= ni ) are used like high-
gain coefficients. Its values are chosen to provide in 
period of time ];[ 212 ii tt −  the relations (21), and the 
following inequalities 
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   The solutions of the systems (18)–(19) are bounded 
in each finite time interval. The parameters of 
correction actions are chosen with the goal of state 
space variables stabilization, and the next bounds can 
be introduced 

.1,10,const)( −=≥∀=≤ nitFt iiε  
   In the closed loop system (18)–(19) 

0)(sgn)(sgn 11 ≥∀= tttv ε  according to procedure, 

and the equalities )(sgn)(sgn ttv ii ε= , 1,2 −= ni  are 
guaranteed only 22 −>∀ itt  out of zones ii ∆≤ε  (23).  

   If )0(sgn)0(sgn iiv ε= , 1,2 −= ni , then the closed 
loop system (18)–(19) at initial time moment can be 
expressed in the form 
 ,1,1,sgn1 −=−= + niM iiii εεε&  .: nn e=ε  
The variables of this system converge monotonically 
to some vicinity of the origin if the amplitudes of 
correction actions are chosen on the base of sufficient 
conditions  

 
,1,1,0)(

)sgn(0

11

1

−=>⇒<−≤

≤−⇒<

++

+

niFMMF

M

iiiii

iiiiii

ε

εεεεε &
 (24) 

where ii EF = , 1,1 −= ni . In the “worst” case the 
range of errors deviations can be estimated in the 
following way: 
 111 )0( EF ≤= ε  (25) 

2232222 )()( tMFEtF ++≤= ε , 

,1,2,)()( 22122 −=++≤= −+− nitMFEtF iiiiiii ε  

nn EF = . 
The inequalities for the amplitudes iM , which 
provides (22) for given time are 
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   Taking into account (25), the following relation can 
be introduced from (26) (from bottom to top) 
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Thus, the parameters ∗
iM  (27) was calculated and 

∗>∀ ii MM , 1,1 −= ni  the inequalities (22) are 
fulfilled. 
   Let us suppose, for example 

1,2,2 2212 −=−= −− nittt ii∆  
and 0... 322234121 >−==−=−== −− nn tttttttt∆ . 
Then the upper bound for choice 0>t∆ , which 
provides convergence of estimation errors in finite 



 

time 0>T  is 
 ))12(2/(0 1 −≤< −nTt∆ . (28) 
   The amplitudes iM  are chosen sequentially from 
bottom to top on the base of (27), (25) for accepted 
value of t∆  (28). 
   With (22)–(23) the closed loop system (18)–(19) can 
be rewritten in the following form 
 21111 εεε +−= lM& ,  11 /1 l≤ε  1tt >∀ ; (29) 

111 )( ++− +−−=+−= iiiiiiiiii lMvlM εαεεε& , 

⇒≤− ii lv /11 iii l ∆+≤ /1ε  12 −>∀ itt ,  1,2 −= ni . 
   For the variables of the system (29) in time intervals 

];[ 21212 iii tttt =+−− ∆  the next estimations are true 
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   Taking into account the relations 
11111 ttlMv >∀= ε , 12)( −>∀−= iiiiii ttlMv αε , 

1,2 −= ni , the lower bounds for coefficients 0>il  
can be calculated from (30) to provide (23) 
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According to (30)–(31) for time interval Ttt i ≤<2  
we have for the system (29) variables  
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   From (31), (32) it follows that inequalities 
δ≤− − )()( 1 tvte nn , δε ≤− )(1 tn  are true Tt ≥∀  for 

each ∗
−− > 11 nn ll , if ∗

−1nl  is chosen according to  
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   For accepted ∗
−− > 11 nn ll  the accuracy  
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is provided by appropriate choice of feedback 
coefficients 2−nl  (31). Both inequalities  
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For selected ∗
−− > 22 nn ll  the size of zone 2−∆n  is 

calculated )/()(0 2212 −−−− +−≤< nnnn lM∆∆ δδ . 
This values is provided by appropriate choice of 
coefficient 2−nl  (31), and so on further. Thus, both 
inequalities 
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are chosen sequentially on the basis of inequalities 
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where )/()(0 1121 ++++ +−≤< iiii lM∆∆ δδ . The 
Lemma 2 has been proved. 
   Let us note that estimations (20) are true for zero 
initial conditions 0)0( =iz  in the observer (17). With 
measurements of )(1 te  the initial value of the variable 

)(1 tε  can be calculated )0()0()0( 111 ε⇒= ez . This 
value can be used to accelerate the convergence 
process of observation errors. 
   With using observer of mixed variables (17), (19) 
the basic discontinuous control law (13)–(14) is 
realized in the form 

),...sgn()(sgn 1112211 −−− ++++−= nnn vzczcecxbMu  
and according to (21) this control input provides 
convergence to ∆=++++ − δ)1...( 132 nccc -vicinity 
of sliding surface 0=s  in finite time Tts > .  
   Thus for stt >  in the closed loop system (1), (13)–
(14), (17), (19) the real sliding mode exists 
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According to the last relations, the tracking problem is 
solved with some accuracy  
                   δ≤)(1 te  stt >∀ . 
 
4 Example 
   The procedure of tracking system synthesis of 
inverted pendulum is considered as an example of 
designed procedure. The direct current motor (DC 



 

motor) is used as actuator of electromechanical system 
[Angeli, 2001]. The dynamical model of the plant can 
be described by third order differential equations 
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where 1x  ][rad  is angular position of the pendulum, 

2x  ]/[ srad  is angular velocity, 3x  ][ mN ⋅  is 
electromechanical torque applied to the pendulum 
suspension axis, u  is control input (DC motor 
voltage); the variables )(txi  are bounded by the 
following constants ii Xtx ≤)(  ; )(tη  is unknown 
time function, which characterize the external 
bounded disturbances influence (2), 03 >b , 0>∀ ija , 

33323 ,, aab  are known coefficients, lga /21 = , 

la /22 κ= , )/(1 2
23 mla = , ]/s[8,9 2mg =  is 

gravitation force acceleration, m  ][kg , l  ][m  the 
mass and length of pendulum correspondingly, κ  

][ sPa ⋅  is viscous friction coefficient, the parameters 
m , l , κ  are not known exactly, but their ranges are 
known. 
   The tracking problem for desired trajectory )(tg  (5) 
with respect to output variable )(1 tx  is stated under 
assumption that only output variable 

)()()( 11 tgtxte −=  is available for measurements. 
   The external disturbances in system (36) are 
unmatched disturbances, the conditions (3), (4), (8) 
are fulfilled. Let us write the system (36) in canonical 
form with respect to output variable (11) by using 
non-singular coordinate transformations (10) 
 21 ee =& , 32 ee =& , bute += )(3 ψ& , (37) 

where 323bab = , bbb ≤≤<0 ,  
gxe −= 11 , gxe &−= 22 , 

gxaxaxae &&−++−= )(sin 3232221213 η , 
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3,2,1,)( =≤ iEte ii , 2,12,1 2XE = , 

0)( ≥∀≤ tFtψ . 
   The basic control law (13) and inequality for 
amplitude choice (15) are chosen in the form 

sMu sgn−= , 32211 eececs ++= , 

./)( 3221 bFEcEcM ++>  
   For informational support of selected control law we 
one can introduce the reduced observer of mixed 
variables (17) in the feedback loop. This observer is 

second order observer with correction actions in the 
form of sat-functions (19) 
 ,121 vzz +=&  )(sat 1111 εlMv = , (38) 

,22 vz =&  )(sat 1222 vlMv = . 
   According to (37), (38) the equations for 
observation errors 2,1, =−= ize iiiε are 
 232121 , vev −=−= εεε && . 
   The basic control input is realized in the form 
 )(sgn 22211 vzcecsMu ++−= . (39) 
   The numeric experiment of closed loop system (36), 
(38), (39) is provided in the Matlab–Simulink 
environment under the following parameters values 

421 == cc , 232 =a , 1033 =a , 103 =b , 
π21 =X , 12 =X , ,501 =l  1002 =l .  

Different operation regimes are considered under set 
of external disturbances functions and parameters 

]1.1;9.0[∈m , ]1.1;9.0[∈l , ]9;7[∈κ  variations. For 
“worst” case the following parameters of controller 
(38), (39) are used  
 24=M , 100,50 21 == ll , 51 =M , 102 =M . (40) 
The convergence of the output variable )(1 tx  of the 
system (36) to the desired constant signal is shown on 
the Fig. 1. Fig. 2 depicts the convergence of the output 
variable to harmonic reference signal )5.0sin( tg =  
under influence of harmonic external disturbances 

tt 2sin5.0)( =η  with the same feedback coefficients 
(40). 
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Figure 2. 



 

   The simulation results show the efficiency of 
proposed approach for synthesis of tracking system 
under uncertainty of system’s parameters and external 
disturbances. 
 
5 Conclusion 
A major solution aspect of the problem consists in the 
development of estimation methods for the 
unmeasurable external disturbances and functional 
uncertainties using observation subsystems. Such an 
approach appreciably simplifies the structure of the 
resulting controller, as there is no need to introduce 
the autonomous dynamic models of the external 
disturbances, to describe in detail and perform real 
calculations using the nonlinear expressions (which is 
especially topical for controller synthesis based on the 
complete nonlinear model). Moreover, this approach 
relaxes the requirements to the amount of a priori 
information about the plant and its operating 
conditions. The result aims at creating universal and 
easily implementable invariant tracking systems that 
do not require (a) readjustment under a considerable 
variation of the parameters and external factors during 
operation and (b) a complete set of sensors in the 
control system. 
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