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Abstract
We carry out the global bifurcation analysis of the

Kukles system representing a planar polynomial dy-
namical system with arbitrary linear and cubic right-
hand sides and having an anti-saddle at the origin. Us-
ing our geometric approach, we control all possible
limit cycle bifurcations and solve the problem on the
maximum number and distribution of limit cycles in
this system. Numerical experiments are done to illus-
trate the obtained results.
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1 Introduction
In this paper, we continue studying the Kukles cubic

system
ẋ = y,

ẏ = −x+ δy + a1x
2 + a2xy + a3y

2

+ a4x
3 + a5x

2y + a6xy
2 + a7y

3.

(1.1)

I. S. Kukles was the first who began to study (1.1) solv-
ing the center-focus problem for this system in 1944:
he gave the necessary and sufficient conditions for
O(0, 0) to be a center for (1.1) with a7 = 0 [Kukles,
1944]. Later, system (1.1) was studied by many mathe-
maticians. In [Lloyd and Pearson, 1992], for example,
the necessary and sufficient center conditions for arbi-
trary system (1.1), when a7 6= 0, were conjectured.
In [Rousseau et al., 1995], global qualitative pictures
and bifurcation diagrams of a reduced Kukles system

(a7 = 0) with a center were given. In [Wu at al., 1999],
the global analysis of system (1.1) with two weak foci
was carried out. In [Ye and Ye, 2001], the number of
singular points under the conditions of a center or a
weak focus for (1.1) was investigated. In [Zang at al.,
2008], new distributions of limit cycle for the Kukles
system were obtained. In [Robanal, 2014], an accu-
rate bound of the maximum number of limit cycles in a
class of Kukles type systems was provided.

In [Gaiko and van Horssen, 2004; Gaiko, 2008b],
we constructed a canonical cubic dynamical system of
Kukles type and carried out the global qualitative anal-
ysis of a special case of the Kukles system correspond-
ing to a generalized cubic Liénard equation. In particu-
lar, it was shown that the foci of such a Liénard system
could be at most of second order and that such system
could have at most three limit cycles in the whole phase
plane. Moreover, unlike all previous works on the Kuk-
les type systems, global bifurcations of limit and sepa-
ratrix cycles using arbitrary (including as large as pos-
sible) field rotation parameters of the canonical system
were studied. As a result, a classification of all possi-
ble types of separatrix cycles for the generalized cubic
Liénard system was obtained and all possible distribu-
tions of its limit cycles were found.

In [Gaiko, 2003, 2005, 2008a, 2009b], we also pre-
sented a solution of Hilbert’s sixteenth problem in the
quadratic case of polynomial systems proving that for
quadratic systems four is really the maximum number
of limit cycles and (3 :1) is their only possible distribu-
tion. We established some preliminary results on gene-
ralizing our ideas and methods to special cubic, quar-
tic and other polynomial dynamical systems as well.



In [Gaiko, 2008b, 2009a, 2011b, 2012a], e. g., we pre-
sented a solution of Smale’s thirteenth problem [Smale,
1998] proving that the classical Liénard system with a
polynomial of degree 2k+ 1 could have at most k limit
cycles and we could conclude that our results agree
with the conjecture of [Lins et al., 1977] on the max-
imum number of limit cycles for the classical Liénard
polynomial system. In [Gaiko, 2012b, 2012c, 2014],
under some assumptions on the parameters, we found
the maximum number of limit cycles and their possible
distribution for the general Liénard polynomial system.
In [Gaiko, 2011a], we studied multiple limit cycle bi-
furcations in the well-known FitzHugh–Nagumo neu-
ronal model. In [Broer and Gaiko, 2010; Gaiko, 2016],
we completed the global qualitative analysis of quartic
dynamical systems which model the dynamics of the
populations of predators and their prey in a given eco-
logical system.

System (1.1) can be considered as a generalized
Liénard cubic system. There are many examples in the
natural sciences and technology in which such and re-
lated systems are applied; see [Gaiko, 2012b, 2012c,
2014]. Such systems are often used to model either me-
chanical or electrical, or biomedical systems, and in the
literature, many systems are transformed into Liénard
type to aid in the investigations. They can be used, e. g.,
in certain mechanical systems with damping and restor-
ing (stiffness), when modeling wind rock phenomena
and surge in jet engines. Such systems can be also
used to model resistor-inductor-capacitor circuits with
non-linear circuit elements. Recently, e. g., a Liénard
system has been shown to describe the operation of an
optoelectronics circuit that uses a resonant tunnelling
diode to drive a laser diode to make an optoelectronic
voltage controlled oscillator. There are also some ex-
amples of using Liénard type systems in ecology and
epidemiology [Gaiko, 2012b, 2012c, 2014]. To control
natural processes occurring in such systems, especially
related to periodicity and oscillations, we use so-called
field rotation parameter; see [Gaiko, 2003].

In this paper, we will use the obtained results and our
bifurcational geometric approach for studying limit cy-
cle bifurcations of Kukles cubic system (1.1). In Sec-
tion 2, we construct new canonical systems with field
rotation parameters for studying global bifurcations of
limit cycles of (1.1). In Section 3, using these canonical
systems and geometric properties of the spirals filling
the interior and exterior domains of limit cycles, we
give a solution of the problem on the maximum num-
ber and distribution of limit cycles for Kukles system
(1.1). This is related to the solution of Hilbert’s six-
teenth problem on the maximum number and distribu-
tion of limit cycles in planar polynomial dynamical sys-
tems [Gaiko, 2003]. Numerical experiments are also
done to illustrate the theoretical results.

2 Canonical Systems
Applying Erugin’s two-isocline method [Gaiko, 2003]

and studying the rotation properties [Bautin and Leon-
tovich, 1990; Gaiko, 2003; Perko, 2002] of all parame-
ters of (1.1), we prove the following theorem.

Theorem 2.1. Kukles system (1.1) with limit cycles can
be reduced to the canonical form

ẋ = y ≡ P (x, y),

ẏ = q(x)+(α0 − β + γ + β x+ α2 x
2) y

+ (c+ dx) y2 + γ y3 ≡ Q(x, y),

(2.1)

where
1) q(x) = −x+(1+1/a)x2−(1/a)x3, a = ±1,±2

or
2) q(x) = −x+ b x3, b = 0,−1,

or
3) q(x) = −x+ x2;
α0, α2, γ are field rotation parameters and β is a semi-
rotation parameter.

Proof. System (1.1) has two basic isoclines: the cubic
curve

−x+ δy + a1x
2 + a2xy + a3y

2

+ a4x
3 + a5x

2y + a6xy
2 + a7y

3 = 0

as the isocline of “zero” and the straight line y = 0 as
the isocline of “infinity”.
These isoclines intersect at least at one point: at the

origin which is an anti-saddle (a center, a focus or a
node). Besides, (1.1) can have two more finite singular-
ities (two saddles or a saddle and an anti-saddle) or one
additional finite singular point (a saddle or a saddle-
node), or no other finite singularities at all. All these
singular points lie on the x-axis (y = 0), and their co-
ordinates are defined by the equation

q(x) ≡ −x+ a1x
2 + a4x

3 = 0 (2.2)

depending just on the parameters a1 and a4.
Without loss of generality, q(x) as given by (2.2) can

be written in the following forms:
1) q(x) ≡ −(1/a)x(x−1)(x−a)
= −x+(1+1/a)x2−(1/a)x3, a = ±1,±2 or
2) q(x) ≡ −x(1− bx2) = −x+ b x3, b = 0,−1, or
3) q(x) ≡ −x(1− x) = −x+ x2.
It means that, together with the anti-saddle in (0, 0),

we can have also:
1) two saddles: at (1, 0) and (−2, 0) for a = −2 or at

(1, 0) and (−1, 0) for a = −1; or a saddle at (1, 0) and
an anti-saddle at (2, 0) for a = 2; or a saddle-node at
(1, 0) for a = 1;
2) no other finite singularities;
3) one saddle at (1, 0).
At infinity, system (1.1) has at most four singular

points: one of them is in the vertical direction and the
others are defined by the equation

a7u
3 + a6u

2 + a5u+ a4 = 0, u = y/x. (2.3)

Instead of the parameters δ, a2, a3, a5, a6, a7, also
without loss of generality, we can introduce some new
parameters c, d, α0, α2, β, γ :



δ = α0 − β + γ; a2 = β; a3 = c;

a5 = α2; a6 = d; a7 = γ

to have more regular rotation of the vector field
of (1.1) [Gaiko, 2003].
Then, taking into account q(x), equation (2.3) is writ-

ten in the form

γ u3 + d u2 + α2 u+ s = 0,

u = y/x, s = −1/a, b.

(2.4)

Thus, we have reduced (1.1) to canonical system (2.1).
If c = d = α0 = α2 = β = γ = 0, we obtain the

following Hamiltonian systems:

ẋ = y, ẏ = −x+ (1 + 1/a)x2 − (1/a)x3,

a = ±1,±2;

(2.5)

ẋ = y, ẏ = −x+ b x3, b = 0,−1; (2.6)

ẋ = y, ẏ = −x+ x2. (2.7)

All their vector fields are symmetric with respect to
the x-axis, and, besides, the fields of system (2.5) with
a = 2,−1 and system (2.6) with b = 0,−1 are sym-
metric with respect to the straight line x = 1 and cen-
trally symmetric with respect to the point (1, 0). Sys-
tems (2.5)–(2.7) have the following Hamiltonians, re-
spectively:

H(x, y) = x2−(2/3) (1+1/a)x3+(1/(2a))x4+y2,

a = ±1,±2;

H(x, y) = x2 − (b/2)x4 + y2, b = 0,−1;

H(x, y) = x2 − (2/3)x3 + y2.

If α0 = α2 = β = γ = 0, we will have the system

ẋ = y, ẏ = q(x) + (c+ dx) y2 (2.8)

and the corresponding equation

dy

dx
=
q(x) + (c+ dx) y2

y
≡ F (x, y). (2.9)

Since F (x,−y) = −F (x, y), the direction field of
(2.9) (and the vector field of (2.8) as well) is symmetric
with respect to the x-axis. It follows that system (2.8)
has centers as anti-saddles and cannot have limit cycles
surrounding these points. Therefore, without loss of
generality, the parameters c and d in system (2.1) can
be fixed.
To prove that the parameters α0, α2, γ and β rotate

the vector field of (2.1), let us calculate the following
determinants:

∆α0
= P Q′α0

−QP ′α0
= y2 ≥ 0,

∆α2
= P Q′α2

−QP ′α2
= x2y2 ≥ 0,

∆γ = P Q′γ −QP ′γ = y2(1 + y2) ≥ 0,

∆β = P Q′β −QP ′β = (x− 1) y2.

By definition of a field rotation parameter [Bautin and
Leontovich, 1990; Gaiko, 2003], for increasing each

of the parameters α0, α2 and γ, under the fixed oth-
ers, the vector field of system (2.1) is rotated in pos-
itive direction (counterclockwise) in the whole phase
plane; and, conversely, for decreasing each of these pa-
rameters, the vector field of (2.1) is rotated in negative
direction (clockwise). For increasing the parameter β,
under the fixed others, the vector field of system (2.1)
is rotated in positive direction (counterclockwise) in the
half-plane x > 1 and in negative direction (clockwise)
in the half-plane x < 1 and vice versa for decreasing
this parameter. We will call such a parameter as a semi-
rotation one.
Thus, for studying limit cycle bifurcations of (1.1), it

is sufficient to consider canonical system (2.1) contain-
ing the field rotation parameters α0, α2, γ and the semi-
rotation parameter β. The theorem is proved. �

3 Global Bifurcations of Limit Cycles
By means of our bifurcational geometric approach

[Gaiko and van Horssen, 2004; Gaiko, 2008b, 2009a,
2011b, 2012a, 2012b, 2012c, 2014, 2015, 2016], we
will consider now the Kukles cubic system in the form
(when a = 2):

ẋ = y,

ẏ = −(1/2)x(x− 1)(x− 2)

+ (α0 − β + γ + β x+ α2 x
2) y

+ (c+ dx) y2 + γ y3.

(3.1)

All other Kukles systems can be considered in a simi-
lar way. Using system (3.1), we will prove the follow-
ing theorem.

Theorem 3.1. Kukles cubic system (1.1) can have at
most four limit cycles in (3 :1)-distribution.

Proof. According to Theorem 2.1, for the study of
limit cycle bifurcations of system (1.1), it is sufficient
to consider canonical system (2.1) containing the field
rotation parameters α0, α2, γ and the semi-rotation pa-
rameter β. We will work with system (3.1) which has
three finite singularities: a saddle S(1, 0) and two anti-
saddles, O(0, 0) and A(2, 0).
Vanishing all of the rotation parameters α0, α2, γ and

also the parameter β, we will get the system

ẋ = y,

ẏ = −(1/2)x(x− 1)(x− 2)

+(c+ dx) y2

(3.2)

which is symmetric with respect to the x-axis and
has centers as anti-saddles at the points O(0, 0) and
A(2, 0). Its center domains are bounded by separatrix
loops of the saddle S(1, 0).
Let us input successively the field rotation parameters

into (3.2). Begin with the parameter α0 supposing that
α0 > 0:

ẋ = y,

ẏ = −(1/2)x(x− 1)(x− 2)

+α0 y + (c+ dx) y2.

(3.3)



On increasing α0, the vector field of (3.3) is rotated in
positive direction (counterclockwise) and the centersO
and A turn into unstable foci.
Fix α0 and input the parameter β > 0 into (3.3):

ẋ = y,

ẏ = −(1/2)x(x− 1)(x− 2)

+(α0 − β + βx) y + (c+ dx) y2.

(3.4)

Then, in the half-plane x > 1, the vector field of (3.4)
is rotated in positive direction again and the focusA re-
mains unstable; in the half-plane x < 1, the vector field
is rotated in negative direction and, when β = α0 > 0,
the focusO becomes weak. Fix this value of the param-
eter β = βAH (the Andronov–Hopf bifurcation value).
Fix the parameters α0 > 0, β = βAH > 0 and input

the third parameter, α2 < 0, into this system:

ẋ = y,

ẏ = −(1/2)x(x− 1)(x− 2)

+(α0 − β + βx+ α2x
2) y + (c+ dx) y2.

(3.5)

The vector field of (3.5) is rotated in negative direction
(clockwise) and a big stable limit cycle appears imme-
diately from infinity. Denote this cycle by Γbc1 .
On decreasing α2, the cycle Γbc1 will contract and, for

some value α2 = α8l
2 , a separatrix eight-loop of the

saddle S will be formed around the points O and A.
On further decreasing α2, two stable limit cycle, ΓO1
and ΓA1 , will appear from the eight-loop surrounding
O and A, respectively. These cycles will contract and,
finally, will disappear at the foci O and A.
Suppose that on decreasing α2, the limit cycle ΓO1

and ΓA1 still exist and consider logical possibilities of
the appearance of other (semi-stable) limit cycles from
a “trajectory concentration” surrounding the points
O and A.
Denote the domains outside the cycle ΓO1 and ΓA1 by
DO

1 and DA
1 , the domains inside the cycles by DO

2 and
DA

2 , respectively. It is clear that on decreasing α2, a
semi-stable limit cycle cannot appear in the domains
DO

1 and DA
1 , since the focus spirals filling these do-

mains will untwist and the distance between their coils
will increase because of the vector field rotation in neg-
ative direction.
By contradiction, we can also prove that a semi-stable

limit cycle cannot appear in the domains DO
2 and DA

2 .
Suppose it appears in a domain for some values of the
parameters: α∗0 > 0, α∗2 < 0, βAH > 0. Return to
initial system (3.2) and change the order of inputting
the field rotation parameters.
Input first the parameter α2 < 0:

ẋ = y,

ẏ = −(1/2)x(x− 1)(x− 2)

+α2 x
2y + (c+ dx) y2.

(3.6)

Fix it under α2 = α∗2. The vector field of (3.6) is rotated
in negative direction and the points O and A become
stable foci.

Inputting the parameter β > 0 into (3.6), we will have
the system

ẋ = y,

ẏ = −(1/2)x(x− 1)(x− 2)

+(−β + βx+ α2 x
2) y + (c+ dx) y2,

(3.7)

the vector field of which is rotated in positive direction
in the half-plane x > 1 and in negative direction in the
half-plane x < 1. Fix it under β = βAH.
Inputting the parameter α0 > 0 into (3.7), we will get

again system (3.5), where the vector field is rotated in
positive direction. Under this rotation, stable limit cy-
cles, ΓO1 and ΓA1 , will appear from the foci O and A,
when they change the character of stability. These cy-
cles will expand, the focus spirals will untwist and the
distance between their coils will increase on increasing
the parameter α0 to the value α0 = α∗0. It follows that
there are no values of α0 = α∗0 > 0, α2 = α∗2 < 0
and β = βAH > 0, for which a semi-stable limit cycle
could appear in the domains DO

2 and DA
2 .

Thus, we have proved the uniqueness of limit cycles
surrounding the points O and A for α0 > 0, α2 < 0
and β = βAH > 0. Similarly, it can be proved the
uniqueness of a big limit cycle surrounding all the finite
singularities O, A and S for this set of the parameters.
Consider again system (3.5) for α0 > 0, α2 < 0

and β = βAH > 0 supposing that it has two stable
limit cycles, ΓO1 and ΓA1 . Change the parameter β :
β > βAH = α0 > 0. On increasing this parameter,
the weak focus O will become rough stable one gener-
ating an unstable limit cycle, ΓO2 (the Andronov–Hopf
bifurcation). On further increasing β, the limit cycle
ΓO2 will join with ΓO1 forming a semi-stable limit cycle,
ΓO12, which will disappear in a “trajectory concentra-
tion” surrounding the pointO. Can another semi-stable
limit cycle appear around this point in addition to ΓO12?
It is clear that such a limit cycle cannot appear either in
the domain DO

3 bounded by the origin O and ΓO2 or in
the domain DO

1 bounded on the inside by ΓO1 because
of the increasing distance between the spiral coils fill-
ing these domains under increasing β.
To prove impossibility of the appearance of a semi-

stable limit cycle in the domain DO
2 bounded by the

cycles ΓO1 and ΓO2 (before their joining), suppose the
contrary, i. e., for some set of values of the parameters
α∗0 > 0, α∗2 < 0 and β∗ > 0, such a semi-stable cycle
exists. Return to system (3.2) again and input the pa-
rameters α2 < 0 and β > 0 getting system (3.7). In the
half-plane x < 1, both parameters act in a similar way:
they rotate the vector field of (3.7) in negative direction
turning the origin O into a stable focus. In the half-
plane x > 1, they rotate the field in opposite directions
generating a stable limit cycle from the focus A.
Fix these parameters under α2 = α∗2, β = β∗ and

input the parameter α0 > 0 into (3.7) getting again
system (3.5). Since, by our assumption, this system
has two limit cycles for α0 < α∗0, there exists some
value of the parameter, α12

0 (0 < α12
0 < α∗0), for which

a semi-stable limit cycle, ΓO12, appears in system (3.5)



and then splits into a stable cycle, ΓO1 , and an unsta-
ble cycle, ΓO2 , on further increasing α0. The formed
domain DO

2 , bounded by the limit cycles ΓO1 , ΓO2 and
filled by the spirals, will enlarge since, by the prop-
erties of a field rotation parameter, the interior unstable
limit cycle ΓO2 will contract and the exterior stable limit
cycle ΓO1 will expand on increasing α0. The distance
between the spirals of the domain DO

2 will naturally
increase, what will prevent the appearance of a semi-
stable limit cycle in this domain for α0 > α12

0 . Thus,
there are no such values of the parameters α∗0 > 0,
α∗2 < 0 and β∗ > 0, for which system (3.5) would
have an additional semi-stable limit cycle.
Obviously, there are no other values of the parame-

ters α0, α2 and β, for which system (3.5) would have
more than two limit cycles surrounding the pointO and
simultaneously more than one limit cycle surrounding
the point A (on the same reasons). It follows that sys-
tem (3.5) can have at most three limit cycles and only
in the (2 :1)-distribution.
Suppose that system (3.5) has two limit cycles, ΓO1

and ΓO2 , around the origin O and the only limit cycle,
ΓA1 , around the point A. Fix the parameters α0 > 0,
α2 < 0, β > 0 and input the fourth parameter, γ > 0,
into (3.5) getting system (3.1). On increasing γ, the
vector field of (3.1) is rotated in positive direction, the
focus O changes the character of its stability, when
γ = β−α0, and a stable limit cycle, ΓO3 , appears from
the origin, since the parameter α2 is non-rough and
negative when γ = β − α0 (the Andronov–Hopf bifur-
cation). On further increasing γ, the cycle ΓO3 will join
with ΓO2 forming a semi-stable limit cycle, ΓO23, which
will disappear in a “trajectory concentration” surround-
ing the origin O; the other cycles, ΓO1 and ΓA1 , will
expand disappearing in a separatrix eight-loop of the
saddle S.
Let system (3.1) have four limit cycles: ΓO1 , ΓO2 , ΓO3

and ΓA1 . Can an additional semi-stable limit cycle ap-
pear around the origin on increasing the parameter γ ?
It is clear that such a limit cycle cannot appear either in
the domain DO

2 bounded by ΓO1 and ΓO2 or in the do-
main DO

4 bounded by the origin and ΓO3 because of the
increasing distance between the spiral coils filling these
domains on increasing γ. Consider two other domains:
DO

1 bounded on the inside by the cycle ΓO1 and DO
3

bounded by the cycles ΓO2 and ΓO3 . As before, we will
prove impossibility of the appearance of a semi-stable
limit cycle in these domains by contradiction.
Suppose that for some set of values of the parameters,
α∗0 > 0, α∗2 < 0, β∗ > 0 and γ∗ > 0, such a semi-
stable cycle exists. Return to system (3.2) again and
input first the parameters α0 > 0, γ > 0 and then the
parameter α2 < 0:

ẋ = y,

ẏ = −(1/2)x(x− 1)(x− 2)

+(α0 + γ + α2 x
2) y+ (c+ dx) y2 + γ y3.

(3.8)

Fix the parameters α0, γ under the values α∗0, γ
∗, re-

spectively. On decreasing the parameter α2, a big sta-

ble limit cycle Γbc1 appears from infinity and then it con-
tracts forming a separatrix eight-loop of the saddle S
around the points O and A. On further decreasing α2,
two stable limit cycle, ΓO1 and ΓA1 ,will appear from the
eight-loop surrounding O and A, respectively. Fix α2

under the value α∗2 and input the parameter β > 0 into
(3.8) getting system (3.1).
Since, by our assumption, system (3.1) has three limit

cycles around the origin O for β < β∗, there exists
some value of the parameter, β23 (0 < β23 < β∗),
for which a semi-stable limit cycle, ΓO23, appears in this
system and then it splits into an unstable cycle, ΓO2 , and
a stable cycle, ΓO3 , on further increasing β. The formed
domain DO

3 bounded by the limit cycles ΓO2 , ΓO3 and
also the domain DO

1 bounded on the inside by the limit
cycle ΓO1 will enlarge and the spirals filling these do-
mains will untwist excluding a possibility of the ap-
pearance of a semi-stable limit cycle there, i. e., at most
three limit cycles can exist around the origin O. On the
same reasons, a semi-stable limit cannot appear around
the point A on increasing the parameter β, i. e., at most
one limit cycle can exist around this point simultane-
ously with at most three limit cycles surrounding the
origin.
All other combinations of the parameters α0, α2, β

and γ are considered in a similar way. It follows that
system (3.1) can have at most four limit cycles and only
in the (3 : 1)-distribution. The same conclusion can be
made for system (1.1). The theorem is proved. �
We have done also numerical simulations supporting

our results based on a Runge-Kutta method using a so-
called function of limit cycles introduced in [Gaiko,
2003] which is a function of a field rotation parameter
depending on a coordinate of the limit cycle and apply-
ing a flow curvature method [Ginoux, 2009] and some
other numerical methods [Van ’t Wout et al., 2016;
Vuik et al., 2015].
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