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Abstract
The issues of controlling the motion of a gyroscopic

pendulum fixed in a gimbal suspension and having three
degrees of freedom are discussed in the paper. It is pro-
posed to use physical analogies and correlate their ac-
tion with the dissipative forces of external viscous fric-
tion, friction in gimbal joints and internal friction in the
pendulum rod, as well as inertial forces and gyroscopic
forces to form the control torques in gimbal joints. Six
modes of controlled movement of the system are consid-
ered, which allow achieving various goals. It is shown
that it is possible to completely suppress the motions of
a gyroscopic pendulum, switch it to the mode of a spher-
ical or physical pendulum, enter the mode of rotation
around a fixed vertical axis, bring it to the mode of reg-
ular precession, and also strengthen or weaken the gy-
roscopic structure of the motion equations. The discus-
sion of these modes of controlled motion is accompanied
by the construction of motion equations both within the
framework of the original nonlinear model and for sim-
plified linear or weakly nonlinear models. The obtained
results are theoretically interesting and may be useful for
specific practical applications in the field of gyroscopic
technology.

Key words
gyroscopic pendulum, gimbal suspension, control

torques.

1 Introduction
One of the most popular pendulum systems among

solid structures is the Lagrange pendulum or top, which
is a heavy axisymmetric rigid body with one fixed point.
This pendulum got its name after the great French math-
ematician Lagrange, who first built its mathematical

model and found its first integrals, bringing the solu-
tion of the problem to quadratures. Subsequently, this
model was canonized by another famous French math-
ematician Poisson, who already performed a detailed
analysis of the motion. Such a model turned out to be
so elegant and interesting in its properties that it was
included in most university textbooks on general me-
chanics and led to the appearance of numerous scien-
tific publications in the field of rigid body dynamics.
In addition, it also laid the foundation for a new field
of instrument-making technology – the theory of gyro-
scopes [Greenhill, 1914; Nikolai, 1948; Magnus, 1971;
Lunts, 1972]. Therefore, such a body is often called a
gyroscopic pendulum. By the middle of the 19th century,
the ”Lagrange problem” has already firmly entered the
circle of fundamental problems of analytical mechanics
and rigid body dynamics, and has also served as a good
example for many related disciplines – first of all, the
theory of mechanical oscillations, the theory of motion
stability, control theory, and many others [MacMillan,
1936; Wittenburg, 1977; Merkin, 1997; Merkin, Afagh,
Bauer, and Smirnov, 2000; Borisov, and Mamaev, 2001;
Chernousko, Akulenko, and Leshchenko, 2017].

The issues of controlling the motion of a rigid body are
also of particular interest in mechanics, and many works
are devoted to them, including those published recently
[Kapitanyuk, Khvostov, and Chepinskiy, 2014; Ba-
landin, and Malkin, 2017; Aleksandrov, and Tikhonov,
2018; Alekseev, Doroshin, Yeromenko, Krikunov, and
Nedovesov, 2018; Materassi, and Morrison, 2018; Molo-
denkov, and Sapunkov, 2019; Akulenko, and Sirotin,
2020]. Along this path, a gyroscopic pendulum with
three degrees of freedom is also a model object, on the
example of which one can consider and analyze a num-
ber of controlled motion modes and discuss their com-
mon and distinctive features. The advantage of the re-
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sults obtained in this case is that they will have not only
theoretical significance, but will also be able to find prac-
tical application in various technical problems, and they
can also be developed and generalized to other systems
with many degrees of freedom [Sarvilov, and Smirnov,
2023].

It should be emphasized that when designing rational
control actions, physical analogies play an extremely im-
portant role, which suggests how these controls should
be formed to achieve certain goals [Merkin, and Smol-
nikov, 2003]. Such goals can be, for example, com-
plete or partial damping of the system movements, as
well as its bringing to any desired mode of motion. It
is clear that the action of control factors can be corre-
lated with dissipative forces of external or internal fric-
tion, inertial forces, or gyroscopic forces, which, as is
well known, have their own features that deserve close
attention [Smirnov, and Smolnikov, 2022]. In addition,
of no small importance is the fact that the control actions
built using the correspondence with natural force factors
will have a very simple and clear structure with suffi-
cient efficiency. This circumstance ensures convenience
in their practical implementation and at the same time
confirms the relevance of the state technique, which is
subject to further development. Everything said makes
it possible to consider rational control actions formed in
such a way.

In view of the foregoing, the purpose of this study is
to discuss the principles of the formation of control ac-
tions using the example of the problem of a gyroscopic
pendulum in a gimbal suspension, as well as to construct
and analyze several modes of controlled movement of
this system, which allow achieving various final goals.
It should be noted that the use of a three-degree gimbal
suspension allows the practical implementation of con-
trol factors, since this makes it possible to create control
torques in all gimbal joints. It remains to be emphasized
that a detailed analysis of these modes of controlled mo-
tion of a gyroscopic pendulum is a rather complex math-
ematical problem due to the presence of three degrees
of freedom. Therefore, in this article, all attention is
focused precisely on the constructions and conclusions
mostly of a qualitative character.

Looking ahead, we note that expressions for control
torques that make it possible to provide six different mo-
tion modes of a gyroscopic pendulum are obtained in this
paper. These control actions allow for complete suppres-
sion of system motion, transition to movement similar
to motion of spherical or physical pendulum, and also
to rotation around a vertical axis or regular precession,
and, finally, they may lead to forced conservative mo-
tion. In addition, a detailed study of these modes is pre-
sented, which is accompanied by analytical expressions
and conclusions of a general nature, as well as simplified
equations of motion for small deviations. The novelty of
the found results lies in the fact that their determination
is based on key relations for the total energy and projec-
tions of the angular momentum vector onto the vertical

axis and the angular velocity vector onto the axis of sym-
metry of a gyroscopic pendulum, which take place in the
controlled motion. Moreover, the use of some physical
analogies mentioned above also contributes to novelty,
which often suggests how the indicated quantities will
change over time, and also significantly facilitates the
discussion of main features of controlled motion modes.

The remainder of the paper is structured as follows.
Section 2 presents the calculation scheme and differen-
tial equations of controlled motion of a gyroscopic pen-
dulum in a gimbal suspension. Section 3 is devoted
to the derivation of basic relations in controlled motion
which play a primary role in the formation of control
actions. Section 4 is dedicated to the analysis of free
motion of a gyroscopic pendulum which is important for
subsequent actions. Section 5 carries out the construc-
tion and study of controlled motion modes of a gyro-
scopic pendulum which allow achieving various goals.
Section 6 compares the controlled motion modes and
summarizes the obtained results in tabular form. At last,
the paper is concluded with final remarks in Section 7.

2 Calculation scheme and mathematical model of
controlled motion of a gyroscopic pendulum in a
gimbal suspension

We will assume that a gyroscopic pendulum is a heavy
axisymmetric rigid body with one motionless point O
fixed in a gimbal suspension. Let m be the mass of the
rigid body; A, B = A and C be the moments of inertia
of the rigid body about the principal axes 123 passing
through point O, and l be the distance from point O to
the center of mass of the rigid body. The deflected posi-
tion of the body is determined by three gimbal angles α,
β and γ is shown together with a gimbal suspension de-
vice in Figure 1. Here, the outer frame can rotate around
the fixed axis x, and α is the angle of rotation around this
axis. The inner frame is suspended in the outer frame
so that it can rotate around the inner axis, perpendicular
to the axis x and in the initial position coinciding with
the fixed axis y, and β is the angle of rotation around the
axis of the inner frame. Finally, the body of a gyroscopic
pendulum (rotor) can rotate around the axis that is per-
pendicular to the axis of the inner frame and in the initial
position coincides with the axis z, and γ is the angle of
rotation around axis 3 associated with the body. We note
that in the initial position the system of axes 123 asso-
ciated with a gyroscopic pendulum coincides with the
fixed system of axes xyz.

Figure 2 shows a sequence of rotations that transforms
the fixed axes xyz into axes 123 connected with the gy-
roscopic pendulum.

Let’s take a look at these rotations. The first rotation is
carried out around the axis x by the angle α, as a result
of which the axis y passes into the intermediate axis c,
and the axis z – into the intermediate axis a. The second
rotation is made around the axis c by the angle β, as a
result of which the axis x goes into the intermediate axis
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Figure 1. Gyroscopic pendulum and gimbal suspension device
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Figure 2. Gimbal angles α, β, γ and a sequence of rotations trans-
forming the fixed axes xyz into axes 123 connected with the body

b, and the intermediate axis a goes into axis 3. Finally,
the last rotation is made around axis 3 by the angle γ,
and it leads to the fact that the intermediate axis b goes
into axis 1, while the intermediate axis c goes to axis 2.

Starting to derive the equations of the controlled mo-
tion of a gyroscopic pendulum, we first find the kine-
matic relations binding the projections of the angular ve-
locity vector onto the principal axes of inertia 123 with
gimbal angles α, β and γ which can be determined using
Figure 2. In fact, let us introduce into consideration the
unit vectors i, j and k, directed along the fixed axes x,
y and z, respectively, as well as the unit vectors e1, e2
and e3, directed along the moving axes 1, 2 and 3, re-
spectively. In addition, we will need unit vectors ea, eb
and ec, which are directed along the intermediate axes a,
b and c, respectively. It’s not hard to understand that the
angular velocity vector of a gyroscopic pendulum can be
written in the form:

ω = α̇i+ β̇ec + γ̇e3. (1)

Since we are interested in its projections onto the main

axes of inertia 123, the vectors i and ec should be ex-
pressed through the vectors e1, e2 and e3. To this end,
we write out the relations following from Figure 2:

eb = e1 cos γ − e2 sin γ, ec = e1 sin γ + e2 cos γ,

i = eb cosβ + e3 sinβ =

= e1 cos γ cosβ − e2 sin γ cosβ + e3 sinβ.
(2)

Substituting (2) into (1), we obtain the final expression
for the angular velocity vector in the main axes:

ω = (α̇ cosβ cos γ + β̇ sin γ)e1 +

+ (−α̇ cosβ sin γ + β̇ cos γ)e2 + (γ̇ + α̇ sinβ)e3.
(3)

As a result, the projections of the angular velocity vector
onto the main axes of inertia 123 will be determined by
the following kinematic relations [Magnus, 1971]: ω1 = α̇ cosβ cos γ + β̇ sin γ,

ω2 = −α̇ cosβ sin γ + β̇ cos γ,
ω3 = γ̇ + α̇ sinβ.

(4)

We will also obtain at once the expressions connecting
the Cartesian coordinates of the center of mass of the
gyroscopic pendulum in a fixed coordinate system with
gimbal angles. It is easy to understand that the radius
vector r of the center of mass of a gyroscopic pendulum
is determined by the expression:

r = −le3. (5)

To obtain the required expressions here we need to con-
nect the unit vector e3 with the unit vectors i, j and k
of the fixed coordinate system, for which we will use the
relations:

ea = −j sinα+ k cosα,

e3 = ea cosβ + i sinβ =

= i sinβ − j cosβ sinα+ k cosβ cosα.

(6)

Taking into account formulas (5) and (6), we find the
relations between the Cartesian coordinates of the center
of mass of a gyroscopic pendulum and the gimbal angles
in the following form [Smirnov, and Smolnikov, 2019]: x = −l sinβ,

y = l cosβ sinα,
z = −l cosβ cosα.

(7)

Next, we calculate the kinetic and potential energies
of the system, using formulas (4) and last expression (7)
[Magnus, 1971]:

T =
1

2

[
A(ω2

1 + ω2
2) + Cω2

3

]
=

=
1

2
A
(
α̇2 cos2 β + β̇2

)
+

1

2
C (γ̇ + α̇ sinβ)

2
,

Π = mg(z + l) = mgl (1− cosα cosβ) ,

(8)
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where, for convenience, the potential energy is measured
from the lower equilibrium position of a gyroscopic pen-
dulum, when α = 0 and β = 0. Therefore, in this posi-
tion, the total mechanical energy of the system is zero.

Substituting formulas (8) into the Lagrange equations
of the second kind [Lurie, 2002], and assuming that the
control torques Mα, Mβ and Mγ act in gimbal joints for
each of the degrees of freedom

d

dt

∂T

∂α̇
− ∂T

∂α
= −∂Π

∂α
+Mα,

d

dt

∂T

∂β̇
− ∂T

∂β
= −∂Π

∂β
+Mβ ,

d

dt

∂T

∂γ̇
− ∂T

∂γ
= −∂Π

∂γ
+Mγ ,

(9)

we obtain after a series of transformations the following
system of differential equations:

(
A cos2 β + C sin2 β

)
α̈+ C

(
γ̈ sinβ + γ̇β̇ cosβ

)
+

+2(C −A)α̇β̇ cosβ sinβ +mgl sinα cosβ =Mα,

A
(
β̈ + α̇2 cosβ sinβ

)
− C (γ̇ + α̇ sinβ) α̇ cosβ+

+mgl sinβ cosα =Mβ ,

C
(
γ̈ + α̈ sinβ + α̇β̇ cosβ

)
=Mγ .

(10)
This system is a mathematical model of the controlled
movement of a gyroscopic pendulum under the action
of control torques in the suspension joints, which is the
main subject of further research.

3 Derivation of basic relations in controlled motion
Based on equations (10), we obtain three basic rela-

tions that take place in the controlled motion of a gy-
roscopic pendulum. These expressions will play a sig-
nificant role in the further formation of control actions,
which should lead to one or another final goal.

The first relation is an energy one, and it can be ob-
tained by compiling an expression for the total mechan-
ical energy E = T + Π according to formulas (8) and
differentiating it with respect to time, taking into account
the motion equations (10). As a result of these transfor-
mations, we can obtain the first key relation:

Ė =Mαα̇+Mβ β̇ +Mγ γ̇, (11)

which was to be expected, since the rate of change of the
total mechanical energy is equal to the total power of the
acting control torques Mα, Mβ and Mγ .

To obtain the second relation, we calculate the angu-
lar momentum of the gyroscopic pendulum relative to
the fixed vertical axis z. For this purpose, we first write
down the expression of the angular momentum vector in
the main axes 123 [Merkin, and Smolnikov, 2003]:

K = Aω1e1 +Aω2e2 + Cω3e3. (12)

Next, it is necessary to recalculate the unit vectors e1, e2
and e3 through the unit vectors i, j and k, for which we

write the following relations:

e1 = eb cos γ + ec sin γ, e2 = −eb sin γ + ec cos γ,

e3 = ea cosβ + i sinβ, eb = −ea sinβ + i cosβ,

ea = −j sinα+ k cosα, ec = j cosα+ k sinα,
(13)

and then we find the required expressions:

e1 = i cosβ cos γ + j (sinα sinβ cos γ +

+cosα sin γ) + k (− cosα sinβ cos γ + sinα sin γ) ,

e2 = i cosβ sin γ + j (− sinα sinβ sin γ +

+cosα cos γ) + k (cosα sinβ sin γ + sinα cos γ) ,

e3 = i sinβ − j sinα cosβ + k cosα cosβ.
(14)

Since we are interested only in the projection of the vec-
tor K onto the axis z, then we will pay attention only to
the terms with k in the expressions for e1, e2 and e3. As
a result of substituting (14) into (12) after simple trans-
formations, we find the desired projection of the vector
K onto the axis z, which we will denote as p:

p = A
(
β̇ sinα− α̇ cosβ sinβ cosα

)
+

+ C(γ̇ + α̇ sinβ) cosα cosβ.
(15)

Differentiating it with respect to time using the motion
equations (10), we obtain the second key relation:

ṗ = (−Mα sinβ cosα+Mβ sinα cosβ +

+ Mγ cosα) / cosβ.
(16)

Finally, the third key relation is actually the last motion
equation (10), taking into account the last expression (4)
for ω3, so that it can be represented as:

ω̇3 =Mγ/C. (17)

The key relations (11), (16) and (17) obtained above
contain information about the character of the change in
the quantities E (total mechanical energy), p (projection
of the angular momentum vector onto the fixed vertical
axis z) and ω3 (projection of the angular velocity vector
onto the principal axis of inertia 3) in time.

We will assume that sensors are installed in all gimbal
joints that can read information about all state variables,
i.e., about the values α, α̇, β, β̇, γ, γ̇ corresponding to
the current configuration of a gyroscopic pendulum. It is
clear that in order to achieve certain final control goals,
the control torques Mα, Mβ and Mγ should be formed
according to the feedback principle, i.e., setting the law
of their change depending on the specified state variables
[Fradkov, 1999; Blekhman, and Fradkov (eds), 2001;
Fradkov, 2007]. In this case, it is advisable to be guided
by three key relationships (11), (16) and (17), as well
as take into account the physical analogies mentioned
above in the introduction. This will allow further con-
sider several control options with a discussion of their
main features. It remains to emphasize that the practi-
cal implementation of control torques formed according
to the feedback principle is a separate technical problem
that is beyond the scope of this work.
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4 Free motion of a gyroscopic pendulum
Let us briefly consider here the free motion of a gyro-

scopic pendulum, the analysis of which is necessary for
further comparisons. To do this, we put on the right sides
of the equations (10)

Mα = 0, Mβ = 0, Mγ = 0. (18)

Then from relation (17) we immediately find the integral

Cω3 = C (γ̇ + α̇ sinβ) = H = const, (19)

and, for definiteness, we can assume that H > 0. Then
the first two equations (10) in this situation will be re-
duced to the form:

A
(
α̈ cos2 β − 2α̇β̇ cosβ sinβ

)
+Hβ̇ cosβ+

+mgl sinα cosβ = 0,

A
(
β̈ + α̇2 cosβ sinβ

)
−Hα̇ cosβ +

+mgl sinβ cosα = 0.
(20)

It can be seen that the terms with H in these nonlinear
equations are gyroscopic terms. In this case, relations
(11) and (16) also imply the energy and momentum in-
tegrals

E = const, p = const, (21)

so there are three integrals in total in free motion. If
small oscillations of a gyroscopic pendulum near the
lower equilibrium position are considered, then the an-
gles α and β can be assumed to be small, and system
(20) will take on a simpler form:{

Aα̈+Hβ̇ +mglα = 0,

Aβ̈ −Hα̇+mglβ = 0.
(22)

It can be seen that the equations of the system motion
are connected in linear model (22) precisely due to gyro-
scopic terms [Aleksandrov, Semenov, and Zhan, 2019].
It should be noted that by introducing the complex vari-
able δ = α+ iβ equations (22) can be written in a com-
pact form as a single equation. To do this, we multiply
the second equation of system (22) by the imaginary unit
i and add it to the first equation, after which we get:

Aδ̈ − iHδ̇ +mglδ = 0. (23)

This equation can be easily solved analytically [Merkin,
and Smolnikov, 2003], but in this paper we will be pri-
marily interested in the structure of such equations for
a complex variable. Indeed, in the study of controlled
motion modes, the solution of these equations turns out
to be much more complicated, and in most cases it can
be carried out only by approximate methods under cer-
tain assumptions. The construction of such solutions is a
rather voluminous problem and, therefore, it is not con-
sidered in this paper.

5 Construction and study of controlled motion
modes of a gyroscopic pendulum

Let us now turn to the analysis of six modes of con-
trolled motion of a gyroscopic pendulum, which lead to
different goals. As these goals, we take the complete
and partial damping of the system movements (with the
transfer to the modes of oscillations of a spherical or
physical pendulum, as well as rotation around a fixed
axis), its introduction to the regular precession mode,
and also the creation of a forced conservative movement.

5.1 Complete suppression of movements of a
gyroscopic pendulum

As the first goal of control, we set the complete sup-
pression of the movements of a gyroscopic pendulum.
To form control torques that meet this goal, one should
turn to physical principles. They suggest that it is advis-
able to compose the control torques in such a way that
they act against the forces of inertia that arise during
the system braking. It is known that a collinear con-
trol has a similar feature, the effective braking proper-
ties of which were previously demonstrated using the ex-
ample of many applied problems of analytical mechan-
ics [Smolnikov, 1991; Merkin, and Smolnikov, 2003;
Leontev, Smirnov, and Smolnikov, 2020; Smirnov, and
Smolnikov, 2022]. This implies that this control is ki-
netic, i.e., it takes into account the dynamic properties
of the system. The formation of control torques accord-
ing to the principle of collinear control in a mechani-
cal system with many degrees of freedom means that
these torques are assumed to be proportional to the cor-
responding generalized impulses, i.e., ∂T/∂α̇, ∂T/∂β̇
and ∂T/∂γ̇. Taking into account that in the problem un-
der consideration the expression for the kinetic energy
has the form (8), we obtain the following control law:

Mα = −b∂T
∂α̇

=

= −b
[(
A cos2 β + C sin2 β

)
α̇+ Cγ̇ sinβ

]
,

Mβ = −b∂T
∂β̇

= −bAβ̇,

Mγ = −b∂T
∂γ̇

= −bC (γ̇ + α̇ sinβ),

(24)

where b here and below is a positive coefficient, which
for simplicity can be considered constant, and the ”–”
sign is placed so that this control has a brake character,
although collinear control can also be used to excite the
accelerating motions of the system [Smirnov, and Smol-
nikov, 2021]. It is also interesting to emphasize that here
an analogy with external viscous friction in the environ-
ment can also be drawn [Routh, 1955; Krivtsov, 2000;
Ivanova, 2001]. Indeed, the dissipative Rayleigh func-
tion for this case has the form:

R =
1

2
b
[
A(ω2

1 + ω2
2) + Cω2

3

]
=

=
1

2
b
[
A
(
α̇2 cos2 β + β̇2

)
+ C (γ̇ + α̇ sinβ)

2
]
= bT,

(25)



212 CYBERNETICS AND PHYSICS, VOL. 12, NO. 3, 2023

where expressions (4) and (8) are used. Thus, the dissi-
pative function (25) is proportional to the kinetic energy,
and this once again confirms that the use of collinear
control leads to effective suppression of motions.

Referring further to relation (17) and taking into ac-
count the last of expressions (24), we obtain:

C
d

dt
(γ̇ + α̇ sinβ) = −bC (γ̇ + α̇ sinβ) , (26)

whence after integration we will have:

Cω3 = C (γ̇ + α̇ sinβ) = H0e
−bt, (27)

where H0 = const (we further assume for definiteness
that H0 > 0). Instead of the integrals of energy and mo-
mentum, which took place in the free motion of a gyro-
scopic pendulum, in this case, according to (11) and (16)
and taking into account (23), we will have the following
relations:

Ė = −2bT, ṗ = −bp, (28)

which demonstrate a decrease in both the total mechani-
cal energy and the angular momentum about the vertical
axis, and it follows from the second equation (28) that

p = p0e
−bt, (29)

where p0 is the initial value of momentum p at t = 0
(we assume that p0 > 0). Relations (27) – (29) demon-
strate the complete attenuation of the movement of the
gyroscopic pendulum, at which the values of E, p and
ω3 will decrease to zero. In this case, instead of equa-
tions (20), we now have from (10), taking into account
(24):
A
(
α̈ cos2 β − 2α̇β̇ cosβ sinβ

)
+ bAα̇ cos2 β +

+H0e
−btβ̇ cosβ +mgl sinα cosβ = 0,

A
(
β̈ + α̇2 cosβ sinβ

)
+ bAβ̇ −

−H0e
−btα̇ cosβ +mgl sinβ cosα = 0,

(30)
and for the case of small deviations, these equations are
rewritten in the following form:{

Aα̈+ bAα̇+H0e
−btβ̇ +mglα = 0,

Aβ̈ + bAβ̇ −H0e
−btα̇+mglβ = 0.

(31)

It can be seen that equations (30) and (31) differ from
(20) and (22) by the presence of dissipative terms [Alek-
sandrov, Semenov, and Zhan, 2019], as well as the fac-
tor e−bt in gyroscopic terms. Writing equations (31) as
a single equation for the complex variable δ = α+ iβ

Aδ̈ + (bA− iH0e
−bt)δ̇ +mglδ = 0, (32)

we see that it is linear, but unlike (23) it has a variable
coefficient, which causes the complexity of its analytical
solution.

5.2 Entering the motion mode of a spherical
pendulum

If it is required to bring the motions of a gyroscopic
pendulum to the mode similar to the oscillations of a
spherical pendulum, it is sufficient to somewhat mod-
ify the control law (24). Let us show further that it is
possible for this to exclude the terms with the moment
of inertia A from relations (24), as a result of which we
obtain the following expressions for the control torques:

Mα = −bC (γ̇ + α̇ sinβ) sinβ,

Mβ = 0, Mγ = −bC (γ̇ + α̇ sinβ) .
(33)

Since the expression for Mγ has not changed from (24),
here ω3 will still decrease to zero in accordance with ex-
pression (27). As for the quantity E, then from relation
(11), taking into account (33), we will have an equation
for it:

Ė = −bC (γ̇ + α̇ sinβ)
2
= −bH

2
0

C
e−2bt < 0, (34)

which shows that the total energy decreases over time. In
addition, equation (34) is easy to integrate, after which
it is possible to establish a specific law of energy change
in time:

E = E0 −
H2

0

2C
(1− e−2bt) → E0 −

H2
0

2C
at t→ ∞,

(35)
where E0 is the initial value of total energy E (at t = 0).
So that, in contrast to the case of the previously consid-
ered collinear control, now the total energy will decrease
not to zero, but to some constant non-zero value. It is
easy to understand that the value p will also tend to a
non-zero level in accordance with the equation

ṗ = −bC (γ̇ + α̇ sinβ) cosα cosβ =

= −bH0e
−bt cosα cosβ,

(36)

following from relation (16), while for deviations of a
gyroscopic pendulum in angles α and β not exceeding
π/2 in absolute value, the right side of relation (36) is
negative, i.e., in this case, p will be monotonically de-
creasing. It remains to write the first two equations (10)
for the considered control mode (33):
A
(
α̈ cos2 β − 2α̇β̇ cosβ sinβ

)
+H0e

−btβ̇ cosβ+

+mgl sinα cosβ = 0,

A
(
β̈ + α̇2 cosβ sinβ

)
−H0e

−btα̇ cosβ +

+mgl sinβ cosα = 0.
(37)

It is already easy to understand from this that the role of
terms with H0 decreases over time, and all other terms
in these equations correspond to conservative motion, in
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contrast to equations (30), where dissipative terms are
clearly observed. This means that for the system of equa-
tions (37), in contrast to (30), there will be a finite con-
servative mode of motion, to which a gyroscopic pendu-
lum will go over time, and it is described by the follow-
ing equations:

A
(
α̈ cos2 β − 2α̇β̇ cosβ sinβ

)
+

+mgl sinα cosβ = 0,

A
(
β̈ + α̇2 cosβ sinβ

)
+mgl sinβ cosα = 0.

(38)
These equations are similar to the equations of motion
of a spherical pendulum written in gimbal angles, which
was required to be shown [Smirnov, and Smolnikov,
2019]. We note that if it is necessary to trace in more
detail the process of the system entering the mode of mo-
tion of a spherical pendulum, then we can consider small
deviations, for which equations (38) take the form:{

Aα̈+H0e
−btβ̇ +mglα = 0,

Aβ̈ −H0e
−btα̇+mglβ = 0,

(39)

and, of course, they can be written as a single equation
for the complex variable δ = α+ iβ:

Aδ̈ − iH0e
−btδ̇ +mglδ = 0, (40)

which differs from (32) by the absence of only one term.

5.3 Entering the motion mode of plane oscillations
of a physical pendulum

Now let’s set as the goal of control the entering of the
system movements to the mode of plane oscillations like
a physical pendulum. Let us show that in this case the
control torques should again be constructed similarly to
(24), only with the exception of the torqueMβ and with-
out changes in the rest:

Mα = −b
[(
A cos2 β + C sin2 β

)
α̇+ Cγ̇ sinβ

]
,

Mβ = 0, Mγ = −bC (γ̇ + α̇ sinβ) .
(41)

Indeed, here ω3 again decreases to zero in accordance
with formula (27). Substituting expressions (41) into
(11), we obtain the following relation for the total me-
chanical energy:

Ė = −b
[
A cos2 βα̇2 + C(γ̇ + α̇ sinβ)2

]
=

= −b
(
A cos2 βα̇2 +

H2
0

C
e−2bt

)
< 0,

(42)

which shows the decrease in energy over time. As for
the value p, according to (16), taking into account (27)
and (41), we will have:

ṗ = b cosα cosβ [Aα̇ sinβ − C(γ̇ + α̇ sinβ)] =

= b cosα cosβ
(
Aα̇ sinβ −H0e

−bt
)
.

(43)

It can be seen that, based on this expression, the behav-
ior of value p in time has an unobvious character, which
requires a separate study. To deal with this issue, we
write the first two equations (10), taking into account the
expressions for the control torques (41):
A
(
α̈ cos2 β − 2α̇β̇ cosβ sinβ

)
+ bAα̇ cos2 β +

+H0e
−btβ̇ cosβ +mgl sinα cosβ = 0,

A
(
β̈ + α̇2 cosβ sinβ

)
−H0e

−btα̇ cosβ +

+mgl sinβ cosα = 0.
(44)

In contrast to (30), where dissipative terms were pre-
sented in both equations, in (44) the second equation
does not contain such a term. Analyzing equations (44),
it is easy to understand that the angle α will eventually
tend to zero, while the angle β in the final conservative
motion mode will be determined from the equation:

Aβ̈ +mgl sinβ = 0. (45)

It represents the equation of oscillations of a physical
pendulum [Markeev, 2007], which, as is known, is simi-
lar to the equation of oscillations of a mathematical pen-
dulum [Merkin, and Smolnikov, 2003]. From the fore-
going, we can conclude that p, as well as ω3, will tend
to zero, while the total energy E will go to a constant
non-zero level. As before, here, if necessary, it is also
possible to trace the process of a gyroscopic pendulum
reaching the specified mode of plane oscillations by writ-
ing equations (44) for small deviations:{

Aα̈+ bAα̇+H0e
−btβ̇ +mglα = 0,

Aβ̈ −H0e
−btα̇+mglβ = 0,

(46)

which for the complex variable δ = α+iβ can be rewrit-
ten in the following form:

Aδ̈ + bA Re δ̇ − iH0e
−btδ̇ +mglδ = 0. (47)

5.4 Entering the rotation mode around the vertical
axis

Let us now assume that the goal of control is to bring
a gyroscopic pendulum to the rotation mode around the
vertical axis with a constant angular velocity. It is easy
to understand that in this case it is appropriate to form
control actions similar to the torques of viscous friction
in two joints of a gimbal suspension corresponding to
rotations of its outer and inner frames by angles α and
β, namely [Lunts, 1972]:

Mα = −b0α̇, Mβ = −b0β̇, Mγ = 0, (48)

where b0 here and below is a positive and constant coef-
ficient [Voronkov, and Denisov, 1999]. We note that the
introduction of another dissipative coefficient b0 instead
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of the previously used coefficient b here is only due to the
fact that its dimension turns out to be different. It is easy
to understand that in accordance with (17) in this situa-
tion ω3 is constant. Turning to relation (11), we obtain,
taking into account (48), the following formula:

Ė = −b0
(
α̇2 + β̇2

)
= −2R < 0, (49)

demonstrating a gradual decrease in total mechanical en-
ergy over time, where the value R is determined by the
formula

R =
1

2
b0

(
α̇2 + β̇2

)
(50)

and plays the role of the dissipative function of viscous
friction in two gimbal joints. In this case, of course, from
the traditional relations

Mα = −∂R
∂α̇

, Mβ = −∂R
∂β̇

, Mγ = −∂R
∂γ̇

(51)

expressions for the control torques (48) will follow. As
for the value p, then according to (16) and (48) we have
the relation:

ṗ = b0

(
α̇ sinβ cosα− β̇ sinα cosβ

)
/ cosβ. (52)

This formula does not give any clear representation
about the process of changing the value p over time. To
deal with this issue in more detail and investigate the fi-
nal mode of motion, let us turn to the first two equations
of controlled motion (10) taking into account (48) and
also using the integral (19) that takes place in the case
under consideration:
A
(
α̈ cos2 β − 2α̇β̇ cosβ sinβ

)
+ b0α̇+Hβ̇ cosβ +

+mgl sinα cosβ = 0,

A
(
β̈ + α̇2 cosβ sinβ

)
+ b0β̇ −Hα̇ cosβ +

+mgl sinβ cosα = 0,
(53)

where one can clearly see again both gyroscopic and dis-
sipative terms in both equations. It is quite clear that in
the final mode of motion the angles α and β will tend
to zero. This process can be traced in more detail by
considering, as usual, the case of sufficiently small de-
viations, i.e., assuming the angles α and β to be small,
as a result of which we obtain from equations (53) the
following simplified equations [Lamb, 1929]:{

Aα̈+ b0α̇+Hβ̇ +mglα = 0,

Aβ̈ + b0β̇ −Hα̇+mglβ = 0.
(54)

Using the complex variable δ = α+ iβ, these equations
can be rewritten as:

Aδ̈ + (b0 − iH)δ̇ +mglδ = 0. (55)

It is important to emphasize that this equation, like equa-
tion (23) for the free motion, contains constant coeffi-
cients. Therefore, it can be solved analytically by ex-
act methods, in contrast to the equations (32), (40) and
(47) obtained earlier in the three previous subsections
and containing a variable coefficient.

Despite the fact that the angles α and β tend to zero
over time, this will not mean complete attenuation of the
movements of a gyroscopic pendulum due to the pres-
ence of the integral (19). It follows from it that in the
final mode of motion the angle γ will change linearly
with time, and the system will enter the mode of rota-
tion around the vertical axis, as it was originally stated,
and this rotation will be carried out at a constant angular
velocity equal to H/C. Hence it follows that the total
mechanical energy E and angular momentum p relative
to the vertical axis in accordance with relations (8) and
(15) will reach constant non-zero values, namely:

E → H2

2C
, p→ H at t→ ∞. (56)

5.5 Entering the regular precession mode
As the next control goal, we will choose the transi-

tion of a gyroscopic pendulum to the regular precession
mode. To do this, we can use the analogy with internal
friction, which requires a detailed discussion. It is clear
that such a mode of controlled motion will be of partic-
ular interest, since the issue of taking into account in-
ternal friction during oscillations of various mechanical
systems is extremely relevant [Smirnov, and Smolnikov,
2019; Smirnov, and Smolnikov, 2022]. To this end, we
construct the control in such a way that the values p and
ω3 are constant, and the total mechanical energy E de-
creases over time, and its dissipation would stop on the
circular motion of the center of mass of the system. Let
us form the control torques as:

Mα = −b0
(
α̇ sinα cosβ + β̇ sinβ cosα

)
sinα cosβ,

Mβ = −b0
(
α̇ sinα cosβ + β̇ sinβ cosα

)
sinβ cosα,

Mγ = 0,

(57)
and we will explain further from what considerations
these expressions are obtained. Of course, we imme-
diately have from relation (17) that ω3 = const, and,
in addition, according to relation (16), expressions (57)
also provide the required momentum integral p = const.
In addition, there is also an energy relation based on (11):

Ė = −b0
(
α̇ sinα cosβ + β̇ sinβ cosα

)2

= −2S < 0,

(58)
where the quantity S, determined by the formula

S =
1

2
b0

(
α̇ sinα cosβ + β̇ sinβ cosα

)2

, (59)
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Figure 3. Gyroscopic pendulum and Euler angles ψ, θ, φ

can be interpreted as some dissipative function, and then
the control torques (57) will be determined by the stan-
dard expressions:

Mα = −∂S
∂α̇

, Mβ = −∂S
∂β̇

, Mγ = −∂S
∂γ̇

. (60)

This analogy is about the dissipative function of internal
friction, and it is indicated by the fact that for the mode
under consideration there is a continuous dissipation of
energy while maintaining the momentum integral. This
is precisely the characteristic feature of internal dissipa-
tion [Smirnov, and Smolnikov, 2022]. We note that ex-
pressions similar in structure were obtained earlier in the
study of the motion of a spherical pendulum with inter-
nal friction in its rod [Smirnov, and Smolnikov, 2019],
as well as in a similar problem for a gyroscopic pendu-
lum [Smolnikov, 2008]. In addition, the problem of the
motion of a rigid body with a cavity filled with a viscous
fluid deserves attention, where the phenomenon of con-
tinuous energy dissipation also took place while main-
taining the momentum integral [Chernousko, Akulenko,
and Leshchenko, 2017].

It remains to show in more detail that the final motion
mode in this case will be the mode of regular precession
of a gyroscopic pendulum. Indeed, referring to formulas
(57), one can see that the action of the control torques
stops when

α̇ sinα cosβ + β̇ sinβ cosα = 0, (61)

and in this case, according to (58), the dissipation of en-
ergy also stops, i.e., the total mechanical energy will tend
to some non-zero value. It is easy to understand that
the indicated equality (61) is fulfilled exactly in the case
when cosα cosβ = const. Remembering that according
to (7) z = −l cosα cosβ, we establish that z = const,
and, therefore, the center of mass of a gyroscopic pendu-
lum will eventually move in a circle like a conical pen-
dulum. The general motion of the system will indeed
represent a regular precession, as can be illustrated by
the following simple reasoning, if we take into account
that usually a regular precession is described using the

Euler angles ψ (precession angle), θ (nutation angle) and
φ (self-rotation angle), which together with a gyroscopic
pendulum are shown in Figure 3.

Using the Euler angles, we write the projections of the
angular velocity vector of the system onto the principal
axes of inertia of a gyroscopic pendulum in the form of
well-known kinematic relations [Magnus, 1971]:

ω1 = ψ̇ sin θ sinφ+ θ̇ cosφ,

ω2 = ψ̇ sin θ cosφ− θ̇ sinφ,

ω3 = φ̇+ ψ̇ cos θ.

(62)

Since z = −l cos θ, we have θ = const. It follows from
the condition of conservation of total mechanical energy
in the final motion mode that at ω3 = const we will have

ω2
1 + ω2

2 = ψ̇2 sin2 θ + θ̇2 = const, (63)

where the expression for the kinetic energy (8) and the
first two formulas (62) are taken into account, and since
θ = const, then ψ̇ = const. Finally, from the equality
ω3 = const and the last formula (62) we establish that
φ̇ = const. The resulting equalities

θ = const, ψ̇ = const, φ̇ = const (64)

determine the regular precession of a gyroscopic pendu-
lum, which is the final mode of motion for the considered
control option (57).

We note that the first two equations of controlled mo-
tion (10), taking into account expressions (57) and inte-
gral (19), take the form:

A
(
α̈ cos2 β − 2α̇β̇ cosβ sinβ

)
+Hβ̇ cosβ +

+b0

(
α̇ sinα cosβ + β̇ sinβ cosα

)
sinα cosβ +

+mgl sinα cosβ = 0,

A
(
β̈ + α̇2 cosβ sinβ

)
+ b0β̇ −Hα̇ cosβ +

+b0

(
α̇ sinα cosβ + β̇ sinβ cosα

)
sinβ cosα+

+mgl sinβ cosα = 0.
(65)

For the case of sufficiently small deviations of the gy-
roscopic pendulum, we will have from (65) simplified
equations in the framework of a weakly nonlinear model:{

Aα̈+Hβ̇ + b0(αα̇+ ββ̇)α+mglα = 0,

Aβ̈ −Hα̇+ b0(αα̇+ ββ̇)β +mglβ = 0,
(66)

in which dissipative effects are of the third order of
smallness in generalized coordinates and velocities. As a
result, here the complexity of constructing an analytical
solution arises again, which, of course, can be produced
only by approximate methods. If we introduce the for-
mer complex variable δ = α+ iβ, then system (66) will
take the form of one equation:

Aδ̈ − iHδ̇ +mglδ = −b0
2

(
δδ̇ + δδ̇

)
δ. (67)
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5.6 Forced conservative movement of a
gyroscopic pendulum

Finally, as the last goal of control, we require the cre-
ation of the mode of forced conservative motion of a gy-
roscopic pendulum. It is clear that for this it is neces-
sary to ensure the constancy of the value E in the pres-
ence of control torques [Leontev, Smirnov, and Smol-
nikov, 2020]. In this situation, it is advisable to build
control torques like gyroscopic forces that do not change
the total mechanical energy. This property is possessed
by the orthogonal control mode, which was previously
successfully applied in the problem of reorientation of
a rigid body in space and in robotics problems [Smol-
nikov, 1979; Smolnikov, 1991]. Based on what has been
said, we now form the control torques, for example, in
the following form:

Mα = κβ̇ cosβ, Mβ = −κα̇ cosβ, Mγ = 0, (68)

where κ is a constant coefficient that can have any sign,
and the multiplication of the control torques by cosβ
is not fundamental in qualitative terms, but represents
a certain convenience and contributes to a more visual
further study of the controlled motions of the system. It
is easy to see that the control torques (68) have a gy-
roscopic structure, while it follows from relation (11)
that E = const, so we really have a conservative mo-
tion, which, however, here is no longer free [Leontev,
Smirnov, and Smolnikov, 2020]. Orthogonality of the
column of control torques [Mα,Mβ ,Mγ ]

T to the col-
umn of generalized velocities [α̇, β̇, γ̇]T explains the
name of the control. In addition, for the value p from
(16) we now have the relation:

ṗ = −κ
(
β̇ sinβ cosα+ α̇ sinα cosβ

)
, (69)

and after integration we find specific law for value p:

p = p0 + κ cosα cosβ = p0 − κ
z

l
, (70)

where it is taken into account that z = −l cosα cosβ,
and p0 = const is the value p that it would have in the
case κ = 0 (i.e., in the absence of orthogonal control),
so this is not the initial value of momentum p at t = 0.
Thus, in contrast to free motion, p is not constant, and
it is a linear function of the vertical coordinate z, so that
the character of the change p in time repeats the behavior
of this coordinate. It follows from the formula (70) that
p can take values in the range [p0 − κ, p0 + κ]. Finally,
using (17), here we again obtain the integral (19). As
a result, the equations of controlled motion (10), taking
into account (68), will have the following form:
A
(
α̈ cos2 β − 2α̇β̇ cosβ sinβ

)
+ (H − κ)β̇ cosβ+

+mgl sinα cosβ = 0,

A
(
β̈ + α̇2 cosβ sinβ

)
− (H − κ)α̇ cosβ +

+mgl sinβ cosα = 0,
(71)

and they differ from the equations (20) for the free mo-
tion mode only by gyroscopic terms, or rather, only by
the coefficient in them – in (71) we have the factorH−κ
instead of the factor H in (20). Considering that it was
previously assumed that H > 0, it is easy to understand
that by proper choice of the control parameter κ, one can
both weaken (for |H − κ| < H , i.e., for 0 < κ < 2H)
and strengthen (for |H − κ| > H , i.e. for κ < 0 or
κ > 2H) gyroscopic terms in equations (71). It is clear
that the case κ = 0 corresponds to the free motion of a
gyroscopic pendulum, while for κ = 2H we will have
that the factor H − κ differs from H only in sign. It is
also interesting to note that, assuming κ = H , one can
completely eliminate gyroscopic terms in equations (71)
and arrive at system (38), which describes a motion sim-
ilar to that of a spherical pendulum. It is important to
note, however, that in the controlled motion mode based
on the modification of the collinear control law and ul-
timately leading to equations (38), E decreases not to
zero, p tends to the non-zero value, and ω3 decreases to
zero over time. In the current control option E and ω3

are constant, and p depends linearly on the coordinate z,
herewith, there is no transient process, and for κ = H
we will immediately have a trajectory in projection onto
a horizontal plane, similar to the trajectory of a spherical
pendulum. These differences must be kept in mind for
the most distinct comparison of the two modes of con-
trolled motion. Finally, if, for example, we put κ = −H
or κ = 3H , then we will amplify (here again by amplifi-
cation we mean the increase in the value of factor H −κ
in absolute value compared to H) gyroscopic terms in
equations (71) by a factor of two, and if put κ = −2H
or κ = 4H , then we obviously triple them.

6 Comparison of controlled motion modes
At the end of the conversation about the controlled

movements of a gyroscopic pendulum, it is convenient to
tabulate the main qualitative features of the six consid-
ered control modes, indicating physical analogies (Ta-
ble 1) and noting how the values E, p and ω3 behave in
each of these modes (Table 2).

Despite the fact that the conclusions presented above
give an important representation of the processes of con-
trolled motion of a gyroscopic pendulum, they are only
of a qualitative character. Of course, in the general case,
the problem of the controlled motion of a gyroscopic
pendulum should be solved by a harmonious combina-
tion of analytical research methods and numerical in-
tegration of the motion equations (10) in any software
package with various options for the formation of control
torques Mα, Mβ and Mγ . In this case, not only obtain-
ing dependencies α = α(t), β = β(t) and γ = γ(t)
through numerical integration is of great interest, but
also constructing the trajectory of the center of mass of
a gyroscopic pendulum in projection onto the horizontal
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Table 1. Physical analogies in controlled motion modes

No. Controlled motion mode Physical analogy

1 Complete suppression Inertial forces
of movements or external

(collinear control) viscous friction
2 Entering the motion mode Inertial forces

of a spherical pendulum (with some
modification)

3 Entering the motion mode Inertial forces
of plane oscillations (with some

of a physical pendulum modification)
4 Entering the rotation Viscous friction

mode around the in two gimbal
vertical axis joints

5 Entering the regular Internal friction
precession mode

6 Forced conservative Gyroscopic forces
movement

(orthogonal control)

Table 2. Behavior of values E, p and ω3 in controlled motion modes

No. E p ω3

1 Decreases Decreases Decreases
to zero to zero to zero

2 Decreases Tends to a Decreases
not to zero non-zero value to zero

3 Decreases Tends to zero Decreases
not to zero to zero

4 Decreases Tends to a Is constant
not to zero non-zero value

5 Decreases Is constant Is constant
not to zero

6 Is constant Is a linear Is constant
function of the

vertical coordinate

plane xy according to first two formulas (7), which gives
a visual representation of its movement [Webster, 1959;
Magnus, 1971]. It is clear that the specific character of
this trajectory when considering the free motion of a gy-
roscopic pendulum essentially depends on the geometric
(length l) and inertial (massm, moments of inertiaA and
C) parameters of the system, as well as on the initial con-
ditions of motion (they should be set as α = α0, α̇ = α̇0,
β = β0, β̇ = β̇0, γ = γ0, γ̇ = γ̇0 at t = 0). In this case,
as is known [Merkin, and Smolnikov, 2003], the trajec-
tory can have both a sinusoidal and a loop-like character,
and a boundary variant can also be realized when the
trajectory has a cycloidal character and has cusps. When
considering controlled modes of motion, the character
of the trajectory also depends on the control parameters
(b, b0 or κ), which increases the number of parameters.
Thus, the issues of numerical integration of the equations

of controlled motion of a gyroscopic pendulum repre-
sent a serious problem that requires separate research.
At the same time, the qualitative conclusions made in
the work and regarding the behavior of the quantities E,
p and ω3 over time will be able to confirm the correct-
ness of the numerical integration procedure for all the
above control modes. As for the analytical part of the
study, it can also be continued by constructing solutions
of simplified equations of controlled motion obtained in
the present paper for the case of small deviations from
the lower equilibrium position of a gyroscopic pendulum
with respect to a complex variable δ = α+ iβ, using ap-
proximate methods, for example, the averaging method
[Bogolyubov, and Mitropolskiy, 1958; Nayfeh, 1981].

7 Conclusion
Summing up the results of the presented study, we can

conclude that the physical principles of control forma-
tion outlined in the paper really lead to very simple ex-
pressions for control torques depending on the state vari-
ables and make it possible to implement a number of
interesting modes of controlled motion of a gyroscopic
pendulum, each of which has its own characteristics and
ultimate goal of control. It was shown that it is possible
to completely or partially suppress the movements of a
gyroscopic pendulum by bringing it to the modes of mo-
tion of a spherical or physical pendulum, as well as to the
mode of regular precession, and, in addition, to carry out
its forced conservative motion. It is interesting to note
that in all variants of the formation of control torques,
they are linear in generalized velocities. The conclusions
drawn are of theoretical interest and can be applied to
other mechanical systems with several degrees of free-
dom, and they are of no small importance for practical
applications in various technical problems.
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