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Abstract
We consider some principal problems on precise at-

titude determination of the free-flying robots and ma-
neuvering land-survey mini-satellites operated on the
orbit altitudes from 550 up to 1000 km. We present
onboard discrete algorithms for nonlinear signal pro-
cessing, calibration, alignment and verification of an
astroinertial attitude determination system which is a
part of the strapdown inertial navigation system.
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1 Introduction
Problems of a spatial guidance, navigation and con-

trol are actual for contemporary small information
spacecraft (SC) and the free-flying space manipula-
tion robots (SMRs). The information mini-satellites
today are applied for communication, geodesy, radio-
and opto-electronic observation of the Earth (Fig. 1)
et al. The satellites are applied at the orbit altitudes
from 550 up to 1000 km, they have mass up to 500 kg
and their structure contains the large-scale solar array
panels (SAPs) for an energy supplying of the electro-
reaction engines.
The free-flying SMRs are designed for service of

manned orbital space station (SS), for instance Inter-
national Space Station, and for assembly of the large
space structures, Fig. 2. The SMRs are applied for ser-
vicing some space experiments which are performed
outside of the SS, inspection and repair operations et
al. For example, actual problem is the capturing of an
inoperative SC by the SMR. To achieve the mission,
the chaser SMR must fly around the target SC so as to
track its docking port whose position and attitude gen-
erally change with respect to inertial reference frame
(IRF), according to a tumbling motion of the target SC.
When the position and attitude relative errors become
sufficiently small, the chaser SMR can safely to cap-

Figure 1. The land-survey mini-satellite, two views

Figure 2. The free-flying SMR at the LSS assembling

ture the target, and then combined mechanical system
on the whole is replaced to the SS (Ikeda et al., 2008).
Global space projects required a designing of the large

space structures. In order to replace the decreasing re-
sources of energy carriers, it is planned to construct the
large solar power stations provided with solar cell pan-
els sizes up to a football ground. There exists also a
project on using the large orbital reflectors to illumi-
nate some towns in the northern regions by solar light
during the polar nights. Such on-orbit space structures
will be realized by free-flying SMRs, see Fig. 2, which
have own mass up to 300 kg, and additional mass of
their mechanical flexible payload may be up to 150
kg. Unlike the usual mooring manoeuvres, very often



the SMR relative initial velocities can be about zero at
stage of short-range guidance. Therefore an accelera-
tion is required at initial stage of SMR flight. For clos-
ing and mooring regimes other peculiarity is recurrence
of these manoeuvres. This peculiarity increases prob-
ability of arising the dangerous collisions with SS sur-
face and requires very careful research of safety moor-
ing, especially at its final phase and a docking. For
increasing a safety of the SMR functioning nearby the
SS it is foreseen: (i) formation of the safety corridors
on the trajectory’s intervals which are tangential to the
SS surface; (ii) a hovering on final interval of the tra-
jectory before docking to the SS surface or in the join-
ing points of corridors; (iii) a ”soft” docking to the SS
surface from the hover state at expense of a manipula-
tor’s mobility. The safe corridors are formed by bea-
cons mounted onto SS surface (Somov et al., 2014).
For every beacon a carrier frequency is different from
other in order to identify situations when SMR enters
into corridor of next beacon. A corridor’s conic surface
bounds an admissible spatial motion of SMR nearby
the SS. Required safety is defined by fulfilment of ”no”
intersections of the corridors with guaranteed distance
to nearest boundary of SS surface. For SMR trajectory
control the important problem consists in SMR transfer
flight from one point onto the SS surface to another one
which can’t be seen from first point.
We have studied the SC attitude determination system

(ADS) with an inertial measurement unit (IMU) based
on the gyro sensors and an astronomical system (AS)
based on star trackers (STs), the that are fixed to the
SC body. The ADS is a part of the strapdown iner-
tial navigation system (SINS) which solves the general
navigation problem determine both orientation and lo-
cation of a satellite (Ishlinsky, 1976; Titterton and We-
ston, 2004).
The problems of the ADS signal processing are con-

nected with integration of kinematic equations in us-
ing the information only on the quasi-coordinate in-
crement vector obtained by the IMU at availability of
noises, calibration (identification and compensation for
the IMU bias bg and variation m of the measure scale
coefficient by the angular rate vector ω) and align-
ment (identification and compensation of errors on a
mutual angular position of the IMU G and AS A ref-
erence bases) (Branetz and Shmyglevsky, 1992; Pit-
telkau, 2001) by its signals with the main period To.
Many authors applied quaternion Λ = (λ0,λ) with
λ={λ1, λ2, λ3}, an orientation matrix C, Euler vector
φ = eΦ, terminal rotation vector ρ = 2e tg(Φ/2) etc.
Moreover, for the SC low angular motion with a small
variation of angle Φ during period To and almost fixed
Euler unit e, integrating kinematic relation for Euler
vector φ(t) with calculation of values Λk ≡ Λ(tk) is
carried out by the scheme:

δφk = iωk =
tk+1∫
tk

ω(τ)dτ ≡ Int(tk,To,ω(t));

φk + δφk = φk+1 ⇒ Ck+1 ⇒ Λk+1,

δφk=δΦkek, tk+1 = tk + To, k ∈ N0 ≡ [0, 1, 2, ...).

Angular movements of a maneuvering land-survey SC
are performed on sequence of the time intervals for the
observation scanning routes (SRs) and quick rotational
maneuvers (RMs) with variable direction of angular
rate vector ω and its module ω up to 5 deg/s. The same
requirements apply to the SMRs’ mobility. For Euler
vector φ(t) differential equation has the form (Bortz,
1971) φ̇ = ω + 1

2φ × ω + f(Φ)φ × (φ × ω) where
scalar function f(Φ) = [1 − ΦSΦ/(2(1 − CΦ))]/Φ2

with notations SΦ ≡ sin Φ and CΦ ≡ cos Φ. Even
for small values of angle Φ function f(Φ) ≈ 1/12,
therefore there arises a coning – known effect of non-
commutative rotation due to changing namely direction
of vector ω (Bortz, 1971; Gusinsky et al., 1997).
In development of our papers (Somov, 2009; Somov

and Butyrin, 2010; Somov et al., 2013) here the mea-
sured information is applied at intermediate points with
a period Tq multiple of the main sampling period To;
polynomial approximation and interpolation are used
and integration of the kinematic equation for the vec-
tor of modified Rodrigues parameters (MRP) (Yong
et al., 2012) is carried out. Quaternion Λ is con-
nected with MRP vector σ = e tg(Φ/4) by straight
σ = λ/(1 + λ0) (Λ ⇒ σ) and reverse λ = 2σ/(1 +
σ2);λ0 = (1 − σ2)/(1 + σ2) (σ ⇒ Λ) relations. For
vector σ, the kinematic equations have the form:

σ̇=Fσ(σ,ω)≡ 1
4 (1− σ2)ω + 1

2σ × ω + 1
2σ〈σ,ω〉;

ω=4[(1− σ2)σ̇ − 2(σ × σ̇) + 2σ〈σ̇,σ〉]/(1 + σ2)2.

2 The Problem Statement
We have introduced the inertial basis I; basis B and

the body reference frame (BRF) connected with the
SC body; standard orbital basis O and the orbit ref-
erence frame (ORF); the sensor basis S (by a tele-
scope); virtual basis A which is calculated by process-
ing an accessible measurement information from AS,
and the IMU virtual basis G computed by processing
the measurement information from the integrating gy-
ros. The BRF attitude with respect to basis I is defined
by quaternion Λ and with respect to the ORF – by an-
gles of roll φ1, yaw φ2 and pitch φ3 in sequence 312.
For simplicity, assume that basis B is coaxial to basis

S. We also assume that the measurement information
is processed in the IMU with a frequency of about 3
kHz and, as a result, the measured values of the quasi-
coordinate increment vector igωm s, s ∈ N0 enter from
the IMU with period Tq � To and the quaternion mea-
sured values Λa

m k enter from AS:

igωm s=Int(ts, Tq,ω
g
m(t)) + δn

s ; Λa
m k=Λk ◦Λn

k;

ωg
m(t) ≡ (1 +m)S∆(ω(t) + bg).

(1)

Here ωg
m(t) is the measured SC angular rate vector

in base G taking into account the unknown small and
slow variations of the IMU bias vector bg = bg(t);
orthogonal matrix S∆(t) describes errors on a mu-
tual angular position of the IMU and AS reference



Figure 3. The IMU measurement filtering by two-pass technology

frames, moreover matrix S∆ ≈ I3 + [∆×] where
vector ∆ = {∆x,∆y,∆z} presents the alignment er-
ror; scalar function m = m(t) presents an unknown
slow variation of the IMU scale factor. We take into
consideration the Gaussian noises δn

s with RMS devi-
ation σb and Λn

k with RMS deviation σa in the IMU
and AS output signals, accordingly. We also assume
small variation of the IMU scale factor, for example,
|m(t)| ≤ 0.01, when relation 1 −m2 ∼= 1 is satisfied.
The problem consists in developing algorithms for ob-
taining the quaternion estimation Λ̂l, l ∈ N0 with pe-
riod Tp = tl+1 − tl multiple to period To, in a general
case, with a fixed delay Td with respect to the time mo-
ments tk, and discrete algorithms for the ADS calibra-
tion and alignment with derivation of estimates b̂g

k, Ŝ∆
k

and m̂k for considered maneuvering SC with a variable
direction of its angular rate vector.
The problems on identification of ”alignment” matrix

S∆
k and variation of a measure scale factor m are the

most complicated ones. This is due to a multiplicative
character of the interconnected parametric disturbances
indicated. Suggested principal ideas are that: there is
needed to define the ∆̂ and m̂ estimations only on the
whole for virtual bases A and G with respect to main
base S = B, without concrete details on errors of indi-
vidual onboard measuring devices and to integrate the
kinematic equations with a small computing drift; an
idea is being developed to use approximation and inter-
polation of the measured information in the intermedi-
ate points with period Tq multiple to the main sampling
period To; identification of the IMU drift vector bg is
ensured by nonlinear discrete Luenberger observer.

3 The IMU Drift Calibration
We will provide a forming of digital estimations b̂g

k,

Ŝ∆
k and m̂k fixed on period To when estimations b̂g

k

is updated on-line, i.e. in each time moment tk,
and estimations Ŝ∆

k , m̂k are regularly formed off-line,
i.e. based on the processing of available measure-
ment data, accumulated during long-term time inter-
vals. For discrete filtering the measured values of the
quasi-coordinate increment vector igωm s we first used the
original two-pass filtering technology – combination of
approximation of the measured data igωm s by the vec-

Figure 4. Estimations and digital filtering of the IMU signals

tor polynomial ĩgωm k(τ) of the 3rd order in the sliding
window 9 measurements on method of least squares
and the spline interpolation on the centers of two ad-
jacent sliding windows by the vector spline ǐgωm k(τ) of
the 5th order for local time τ = t − kTo ∈ [0, To]).
The technology is illustrated by scheme in Fig. 3. Here
errors δiω g of the a measured quasi-coordinate are
marked by blue ”stars” for time moments ts (index s is
shown only), green dotted lines are given polynomials
ĩω g(τ) of 3rd order and burgundy line is presented the
smoothly conjugate splines îω g(τ) = ǐω g(τ) of the 5th
order. Error δωg(τ) for estimation ω̂g(τ) on the angu-
lar rate is presented in lower part of the figure. The es-
timation ω̂g(τ) strongly agreed with estimation îω g(τ)
as it is carried out by explicit analytical relations.
At compensation of errors on the drift vector, a mu-

tual angular position of the IMU and AS reference
frames and on a scale coefficient, the continuous vec-
tor estimation îωk (τ) in base A is computed by relation
îωk (τ) = (1 − m̂k)(Ŝ∆

k )t(̌igωk (τ) − b̂gτ) on k-th time
interval Tk≡ [tk, tk+1], moreover îωk+1 = îωk (To).

Identification of IMU bias bg is carried out with pe-
riod To by the Luenberger observer (Kwakernaak and
Sivan, 1972). At the time interval Tk an estimation
of the SC attitude is attained by integration of the vec-
tor differential equation ˙̂σk(τ) = Fσ(σ̂k(τ), ω̂k(τ))
using ODE45 method (Shampine, 1986; Mathews and
Fink, 1999) with a forming of an estimation of the MRP

Figure 5. The SMR attitude vector spline guidance law in the IRF



Figure 6. Errors on estimation of the IMU drift vector

vector σ̂k(τ). For the vector equation an initial condi-
tion is formed by AS signals in the time moment t0
only (at the ADS switch on), at another cases the initial
conditions are calculated by signals of the Luenberger
observer.
Assume that at the time moment t= tk we have the AS

information on the SC attitude in the form of quater-
nion Λa

m k, the correcting vector ∆pk(go
2 ,Qk) and

quaternion ∆Pk(go
1 ,Qk) were formed, where quater-

nion Qk≡(q0k,qk)≡(Cϕk
2
, eqk Sϕk

2
)≡Qk(eqk, ϕk)=

Λ̃
a

m k ◦ Λ̂k. At the same time moment tk by a trans-
formation Λ̂k ⇒ σ̂k the initial condition σ̂k(0) ≡ σ̂k
is defined for calculation of the MRP vector estimate
σ̂k(τ) on the k-th interval by numerical integration of
the differential equation.
After such integration one can obtain the MRP vec-

tor’s value σ̂k+1 = σ̂k(To) for the local time moment
τ = To. The value of quaternion R̂k is calculated by a
transformation σ̂k+1 ⇒ R̂k.

The developed discrete nonlinear Luenberger ob-
server has the form (Somov and Butyrin, 2016):

Λ̂k+1 = R̂k ◦∆Pk(go
1 ,Qk);

b̂g
k+1 = b̂g

k + ∆pk(go
2 ,Qk);

∆Pk+1 =Qk+1(eqk+1, g
o
1ϕk+1); ∆pk+1 =4go

2σ
q
k+1,

where both the quaternion and vector relations are ap-
plied, moreover the MRP vector σqk+1 is defined an-
alytically on the quaternion value Qk+1, and the ob-
server scalar coefficients go

1 , g
o
2 are calculated by ana-

lytic relations (Somov and Butyrin, 2016).
In final stage the MRP vector values σs are processed

by recurrent discrete filter with period Tp. The filter-
ing technology is illustrated by scheme in Fig. 4. Here
δω(t), δφ(t) are the continuous mismatches and their
filtered digital values δωf

l , δφ
f
l are presented by black

lines when period Tp = 16Tq. As a result, one can ob-
tain the MRP vector values σ̂l which are applied for
a forming of the quaternion estimate Λ̂l, l ∈ N0 with
given period Tp using transformation σ̂l ⇒ Λ̂l.

The IMU astronomical correction is temporarily dis-
abled when module ω(t) of the SC angular rate vector
satisfies the inequality ω(t) ≥ 1 deg/s during a time
interval of the SMR rotational maneuver, but estima-
tion of the SMR angular position continues using the
forecast of the b̂g

k variation.

Figure 7. Errors in the IMU digital signals on the SC orientation

Figure 8. Errors in the IMU output digital signals on angular rate

Figure 9. Errors in IMU signals on angular rate, fragment of Fig. 8

4 The ADS Alignment
The ADS alignment (calculation of matrix Ŝ∆) and

determination of estimate m̂ for the error of the scale
factor m are carried out off-line by comparing the
angular rate vector values, which are recovered au-
tonomously from the IMU signals (vectors ω̂g) and
from the AS correction signals (vectors ω̂a) at the same
time moments.
Here sets of vectors ω̂g

l and ω̂a
l values are formed,

fixed to the time moments tl with a period Tp. For these
vectors the values of modules ω̂g

l = |ω̂g
l |, ω̂a

l = |ω̂a
l |,

units êg
ωl = ω̂g

l /ω̂
g
l , êa

ωl = ω̂a
l /ω̂

a
l are calculated

and the alignment problem is solved on the values of
units êa

ωl in basis A and the units êg
ωl in basis G using

QUEST algorithm.
For calibration of the scale factor error m, the set of

values ml = 1 − ω̂m
l /ω̂

a
l is calculated, the estimate m̂

is obtained by processing this set by the method of least
squares. This estimation is applied in the form of m̂k

until the next calibration is completed.

5 Results of Computer Simulation
In Fig. 5 we present typical the SMR attitude guid-

ance law, values of its parameters were computed with
the use of developed analytic relations. Here compo-



nents of vectors σ(t), ω(t), ε(t) are marked by differ-
ent colors – blue color on roll, green on yaw and red
color on pitch, and modules of vectors ω(t), ε(t) are
marked by black color. At the computer simulation of
the ADS operation we have applied the RMS devia-
tions σb = 0.001 arc sec

√
Hz for frequency 128 Hz

and σa = 0.33 arc sec
√

Hz for frequency 1 Hz in the
IMU and AS output signals, accordingly.
The IMU drift vector bg = {bgi } was adopted with

the components bgi (t) ∈ [−1, 1] arc sec/s which slowly
change. In Fig. 6 errors in the IMU drift estimating are
presented for components of vector δb̂g

k = bg
k − b̂g

k in
the basis G. Hereinafter the errors are marked by the
same different colors on channels.
Digital filtering of the ADS output signals on the SC

orientation with a frequency of 8 Hz yields vector δf ,
its components are presented in Fig. 7. We represent
the ADS errors in determining the angular rate vector
and digital filtering of its values with a frequency of 8
Hz in Figs. 8 and 9 for components δωf

i of vector δωf

using the same colors.
For the IMU drift estimation without astronomical

correction the forecast variations performed on the set
of estimated vectors ω̂g and ω̂a generated in the last
”sliding window” with duration of 20 seconds.
By applying the developed procedures on the ADS

alignment and calibration we have obtained the esti-
mation on components of vector ∆̂ with accuracy ≈ 3
arc sec and the estimation m̂ on the measure scale co-
efficient by the angular rate vector ω with accuracy
≈ 0.025 %.

6 Conclusions
We briefly have presented some principal problems

and developed methods for precise attitude determina-
tion of free-flying SMRs and the maneuvering land-
survey satellites with a variable direction of their an-
gular rate vector. We have developed onboard discrete
algorithms for signal processing, calibration and align-
ment of the astroinertial attitude determination system
and presented numerical results on the efficiency of the
developed algorithms.
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