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Abstract
The paper proposes a new classifier based on new con-

cept closeness for objects finite set: feature values of the
same class objects are close if the difference between
these values is small enough. To pass to this concept, the
combined sample data for each feature k were approx-
imated by mapping onto a set of ordered pairs (k,m),
where m is the interval number of the feature ordered
values. The objects of each pair have close values of the
considered feature. Number lists of training sample ob-
jects of the same class, forming ordered pairs, was called
an information granule. The frequency of any granule
is calculated from the length relation of corresponding
subsets as a complex event. These frequencies allow us
to calculate the frequencies of the object feature values
in different classes, and then the object frequencies as a
whole in a certain class, the maximum of which deter-
mines the object class. Simplicity, robustness and effi-
ciency of the developed algorithm were confirmed ex-
perimentally on 9 databases.
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1 Introduction
The concept of similarity is one of the fundamental in

machine learning, since it allows you to compare data
sets describe the objects of the training sample (TRS)
in order to recognize objects of different classes and ap-
plying this knowledge for dividing the test sample (TS)
into classes [Luger, 2016]. Usually, measure the similar-
ity between two objects is the evaluation of their close-
ness by the distance between them in a metric space.This
paper introduces a new closeness concept, according to
which the feature values of the same class objects are
close if the difference between these values is small
enough. The developed classifier is based on this con-
cept.

Obviously, this classifier operates mainly not on ob-
jects as whole and multidimensional quantities, but only
on individual features of objects and one-dimensional
quantities, and therefore its implementation requires the
development of a completely new method.

Analysis of feature diagrams for several databases has
led to a new concept of object closeness It showed the
distributions of ordered feature values (OFV) differ for
objects of each class. From this, it was concluded there is
a fundamental possibility of classifying objects accord-
ing to the frequency of the nearest neighbors based on
OFV.

The computational procedure is based on approxima-
tion of features distributions of combined sample (CS)
objects. It reduces to calculate the mapping of the en-
tire data set of the CS onto a set of subsets whose ele-
ments are approximately equal to values of correspond-
ing feature. This mapping, based on data granulation
[Yao et al., 2013; Li et al., 2015] was computed as fol-
lows.

For each feature, the set of OFV of the CS objects is
divided into the same number of intervals (it serves as
a parameter) within which the difference between this
feature values is standardized. Lists of the TRS objects
of the same class falling within these intervals are called
information granules. According to the new concept of
closeness, objects falling into these intervals form a set
of nearest neighbors. Therefore, it is approximately as-
sumed granule and objects that form it have the same
statistical characteristics.

The granule frequency is found as the frequency of the
composite event of its occurrence for a certain ordered
pair and class, which is calculated directly from the ra-
tion of the corresponding subsets lengths. Taking into
account that the occurrence frequency of the correspond-
ing feature value in a certain class is approximately equal
to granule frequency, we find the frequency of the object
in each class, as the average frequency for all features,
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and then the object class corresponding to the maximum
of these frequencies.

We were unable to find in the modern literature a sim-
ilar conceptual approach, where the analysis of TRS is
based on the existing concept of closeness and there-
fore aims to determine the object characteristics of var-
ious classes as a whole [Bishop, 2006; Hastie et al.,
2009; Murphy, 2012]. However, the practical imple-
mentation of the proposed approach relies on existing
research. It can be considered the article uses a new
method for estimating nonparametric regression [Tsy-
bakov, 2006], which combines the well-known methods
of nearest neighbors and granulation.

The developed method shares common roots with the
remaining unfinished general theory of pattern recogni-
tion [Grenander, 1976]. According to the theory, infor-
mation at different hierarchical levels are divided into
many non-overlapping blocks information at different
hierarchical levels was break down into a set of non-
overlapping blocks with the selection of the simplest
standard blocks at the lower level. Here information
granules play the role of the simplest blocks.

There is another ”crossing” with existing methods.
The composition and frequency of the granules depend
on the above mentioned parameter. Therefore, for each
of its values, we consider a different approximation of
the TRS and actually analyze the properties of the sam-
ple ensemble, as is customary in the bagging method
[Breiman, 1996].

In the author’s papers [Shats, 2019; Shats, 2020], clas-
sification problems that were considered used a similar
solution method, when the OFV properties were not yet
known. The data set of problem was considered as a
hierarchically organized system, where the relationships
between features, objects and classes were established.
In addition, those studies concerned objects with only
quantitative or categorical features, used data random-
ization [Granichin and Polyak, 2003] by introducing suf-
ficiently small additive components into feature values
in the form of random variables evenly distributed, and
used other dependencies to estimate the feature frequen-
cies (see below).

It was shown in [Shats, 2018] that on the basis the
method used in those articles it is possible to study the
perception process in the sensory systems of an animal.
A model for processing information stored in the brain
of an animal was considered for recognizing classes of
environmental objects by searching for their prototypes.
Since the algorithms of the previous and the methods
proposed here are basically the same, we can count the
classifier is based on a bio-inspired approach.

The algorithm simplicity is the most important dis-
tinguishing feature of the new classifier. It is a direct
consequence of application of the new concept of close-
ness, according to which all objects of the same granule
are close, the object class is determined by linear func-
tions of object feature frequency in individual classes,
and these frequencies are calculated from the simplest

dependencies of probability theory. Another advantage
of the algorithm is its high robustness, which is provided,
in accordance with [Jaynes, 2003], by grouping data into
information granules.

The rest of the paper is organized as follows. The
properties of OFV are discussed in Section 2. Section
3 discusses problem setting and data preparation. The
calculation algorithm is discussed in Section 4. The cal-
culation results for 9 databases are presented in Section
5. Comments on the results of the work and its develop-
ment are given in Section 6.

2 Diagrams of the ordered feature values
In the paper, diagram OFV of the CS were developed,

which are built for any feature as follows. Let’s arrange
the TRS objects in order of non-decreasing values of
some feature and assign them numbers s = 1, 2, . . . ,M ,
where M is the TRS length. On segments of horizontal
straight lines i = const, going at equal distance from
each other, we mark points (t, i) corresponding to the
value t = s/M for objects of each class i. As a result,
we will get the diagram of OFV distribution. We can
build the same diagrams for others features. Obviously,
the diagram set visualizes all the information contained
in the TRS.

An example of such diagram for two features of the
“Glass” database [Asuncion and Newman, 2007] is
shown in Fig. 1. Analysis of diagrams for this and other
databases have shown that the distribution OFV is sub-
stantially different for each class and feature. This prop-
erty of OFV served as the basis for a new concept close-
ness and corresponding new classifier.

3 Problem statement and data preparation
Consider the following classification problem. Let the

TRS be represented by the set {(xs, ys) | s ∈ (1,M)}
of objects xs = (xs1, . . . , xsN )T , which belong to dis-
joint classes ys ∈ (1, C) and have features k ∈ (1, N).
The problem is to construct an algorithm and check its
quality on the TRS and TS, belonging to a single sample.

Note that the TRS features are not order statistics, since
the values of any feature x = (xk1 , . . . , x

k
M )T have dif-

ferent distribution functions.
Some peculiarities of the algorithm require considera-

tion at the stage of data preparation. Here, the feature
values themselves act as labels because the method op-
erates primarily with the frequencies of the feature val-
ues. Therefore, the values of categorical features will
be described by a continuous sequence of integers. In
addition, the widely used normalization of features is re-
dundant here.

If the lengths of the TRS classes differ by several
times, then we are dealing with the problem of clas-
sifying unbalanced classes, the solution of which has
been addressed in the literature [Lopez et al., 2013] The
most popular methods simply reduce the design of a new
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Figure 1. Diagrams of feature 1 (top) and feature 5 (lower) for the
TRS of “Glass” database.

sample, where the class lengths do not differ markedly.
Methods founded on information granulation are also
being developed [Chen et al., 2008], where granulation
is performed in several stages and begins by clustering
objects in accordance with the k-means method. How-
ever, models of this type cannot be applied within the
framework of the proposed concept.

When choosing a balancing scheme, we consider that a
minimum number of excluded objects will preserve the
information contained in the sample as much as possi-
ble. As a result of numerical experiments, the following
method was developed for forming a balanced training
sample (BS) from the TRS objects. The BS contains all
objects of “long” classes, the length of which li exceeds
the threshold value L. In the remaining classes each of
the objects included in the BS of not less thanL/li times.

The parameter L is taken to be equal to the half-sum of
the maximum and minimum length of the TRS classes.
If the quality of the classification turns out to be unsat-
isfactory, then it is advisable to change L and exclude
objects in extremely “short” classes from the TRS. Thus,
the BS contains all objects of the TRS, as well as many
duplicates of objects of “short” classes, and its length
can significantly exceed the length of the TRS.

Because balancing of the TRS is not used in all prob-
lems to simplify we also denote the BS by the TRS.

4 Problem solving algorithm
With the new concept of object closeness, value sub-

sets of each feature for all objects of individual classes

become the central element of calculations. To imple-
ment this change, a mapping of data onto a set of subsets
was found, whose elements are roughly equal to the cor-
responding feature values in individual class.

The following procedure was used to calculate the
mapping of an arbitrary feature k of the OBV. Let’s
order the feature values and then divide the entire
range of its values into n equal intervals hk =
(xmax

k − xmin
k )/(n− 1), where n is the closeness norm,

parameter, xmin
k and xmax

k are the minimum and maxi-
mum values of the feature, respectively. Let us denote
the boundaries of the intervals by the range of numbers
1, 2, . . . , n. Then, we determine the value xk in the scale
of indices according to the following definition: the in-
dex x is equal tom ifW (x/hk) = m, whereW (·) is the
integer part of the number. Obviously the value xk falls
within the interval [m,m+ 1).

As a result, for each n, we get a mapping of data
set of the TSR to the ordered pairs set {(k,m) | k ∈
(1, N),m ∈ (1, n)}. Each element of this set is a
list of objects with close values of features, some lists
may be empty. Any object xs = (xs1, . . . , xsN )T

will be approximated by the vector of indices ds =
(ds1, . . . , dsN )T with an error not exceeding step hk for
feature k, where dsk is the index xsk. Thereby, we
have found the matrix of indices, which is an approxi-
mation of the OBV data matrix: ‖xsk‖ → ‖dmk‖, where
s ∈ (1,K), k ∈ (1, N),m ∈ (1, n), K is length of the
CS.

Let us break down the subset of the ordered pairs
set, related to the TRS objects, into subsets ωi =
{((k,m), i)}, which we will call information granules
(k,m) of class i. A granule is a list of the TRS objects
of a certain class, which for any list object are consid-
ered as nearest neighbors by the value of corresponding
feature. It is obvious that the set {ωi | i ∈ (1, C} ap-
proximates the entire set of the TSR data.

Now let’s find a set of comparative frequencies of gran-
ules that differ for ordered pairs of different classes of
the TRS {f ik,m | k ∈ (1, N),m ∈ (1, n), i ∈ (1, C)}.
Various estimates of f ik,m are possible. In [Shats, 2019;
Shats, 2020], this frequency was equal to the ratio of the
number of granules ωi to the number of objects of class
i or to the total number of pairs (k,m) of all classes. In
this paper f ikm is taken to be equal to the frequency of
the nearest neighbor of object s by feature k in class i:

f ikm =
likm
Lilkm

, (1)

where likm and lkm are the number of granules ωi and
the total number of pairs (k,m), respectively, Li is the
number of objects of class i.

Let us denote by pi(dsk) the probability that the k-th
feature of the object s in class i has index m. Since
pi(dsk) = p(s ∈ ωi | dsk = m), then pi(dsk) =
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Figure 2. Panels of curves of error rates µ(n) for the TRS (top) and
TS (bottom).

f ikm/M . For objects of class i, the occurrence event
ds consists of a complete group of independent events
ds1, . . . , dsN . Then, by the total probability formula we
obtain

pi(ds) =
1

MN

N∑
k=1

f ik,m. (2)

where the value 1
N

∑N
k=1 f

i
k,m is the average fre-

quency of granules ωi. The design class of the object
s is equal to

I(s) = argmax1≤i≤Cpi(ds). (3)

Formulas (1)-(3) are valid for both the TRS and TS
objects, since they belong to a single sample. The quality
of the solution will be estimated by the error rate ν =
ν(n) for training and classification that occurs in the case
of I(s) 6= ys.

So, the problem is reduced to determining values range
of closeness norm n, within which the solution will be
acceptable with respect to the error rates for training
and for classification in this problem, calculated in ac-
cordance with the cross-validation procedure. There-
fore, the value of ν are calculated on some set n ∈
{2, 3, . . . , J}, a subset of which, as is assumed, to con-
tain the closeness norms for the given problem.

5 Effectiveness of the classifier
The effectiveness of the classifier was studied with

nine databases from the UCI repository [Asuncion and
Newman, 2007]: Adult, Breast Cancer, Car evaluation,
Glass, Haberman’s Survival, Iris, Letter Image, Spect
and Wine. The characteristics of the bases cover a fairly
wide range of values by the number of objects (267-
20,000), features (3− 22) and classes (2− 26); and the
database objects have quantitative, categorical, or mixed
attribute types.

For all databases, with the exception of Adult and
Spect database, the calculations were performed for 10
variants of splitting the CS into training and test sam-
ples according to the 10-fold cross-validation procedure.
Since the obtained distributions of error rates could not
were considered normal, the mean values for the consid-
ered options were taken as ν. For the marked databases,
this procedure was not applied, since the composition of
the TRS and TS was fixed.

Fig 2 presents errors curves ν for the TRS (top) and
TS (bottom) databases that are identified by the first let-
ters in their names. They are constructed for J = 50,
because, as follows from the calculations, when as-
sessing the solution quality, one can restrict oneself to
the values n ∈ (5.50). The graphs showed: values
ν ∈ (0.002, 0.38); for each database, the classification
curves have a similar shape to training curves, but go
above them. For any database with a closeness norm of
25 < n ≤ 50, the values of ν for training or for clas-
sification approach some constants, and for half of the
databases, the corresponding curves degenerate into hor-
izontal straight lines ν = const ∈ (0.002, 0.38).

The fact of these constants existence and their near-
ness for the TRS and TS of the same database indicates
new concept of object nearness reveals the regularities
of the class distribution, and the method considered is
robust. Apparently, values of specified constants are pro-
portional to the error level with which the hypothesis the
classes differ in the features distribution is fulfilled.

6 Conclusion
This paper proposes a classifier based on new concept

closeness for objects finite set, according to which prox-
imity is evaluated for each feature of objects of the same
class, and not for the object as a whole.

The computational procedure is based on approxima-
tion of features distributions of the CS objects. At first,
the data set of the CS is mapped onto a set pairs (k,m),
and then information granules are found. They are lists
of object numbers of individual classes of the TSR,
which are closest neighbors in the value of correspond-
ing feature.

The granule frequencies and any object belonging to
them are defined as a complex event from the ratio of the
lengths of corresponding subsets. Using these frequen-
cies, we calculate the object classes of based on formula
of total probability.
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The proposed classifier differs from most existing clas-
sifiers by the simplicity of its algorithm, since it operates
mainly with one-dimensional values, which are individ-
ual features values, and not multidimensional values that
describe objects as a whole.

Calculations for 9 databases testify to the efficiency
and robustness of the algorithm. For four databases, er-
rors for classification and for training were less than 5%.
Sufficiently high quality of the obtained results corre-
sponds to the conclusion that the new classifier is based
on a bio-inspired approach.

The results of this study appear perspective with re-
spect to application of new concept of object closeness
as well as new classifier. In particular, by considering
the changing of numbers erroneously qualified objects
on sequence values of closeness norms as a random pro-
cess.
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