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Abstract— We provide a method to reconstruct the neural
spike-timing behavior from input-output measurements. The
proposed method ensures an accurate fit of a class of neuronal
models to the relevant data, which are in our case the dynamics
of the neuron’s membrane potential. Our method enables us to
deal with the problem that the neuronal models, in general, not
belong to the class of models that can be transformed into the
observer canonical form. In particular, we present a technique
that guarantees successful model reconstruction of the spiking
behavior for an extended Hindmarsh-Rose neuronal model. The
technique is validated on the data recorded in vitro from neural
cells in the hippocampal area of mouse brain.

I. INTRODUCTION

Mathematical modeling of neural dynamics is essential
for understanding the principles behind neural computation.
Since the introduction of clamping techniques, which made
it possible to measure the membrane potential and currents
of single neurons [1], and inspired by the pioneering works
of Hodgkin and Huxley [2], a large number of models
describing action potential generation of neural cells have
been developed (see [3] for a review). These models offer a
qualitative description of the mechanisms of spike generation
in neural cells. To study the specific behavior of neural cells,
e.g. the dynamic fluctuations of the membrane potential, a
rigid quantitative evaluation of these models against empiri-
cal data is needed. For the dynamical models this amounts to
the identification of the model’s states and parameter values
from input-output measurements in the presence of noise.

Which of the many available models is the most suitable
one for this goal? In general, models of neural dynamics
can be classified as biophysically plausible or as purely
mathematical. The biophysically realistic conductance based
neuronal models describe the generation of the spikes as a
function of the individual ionic currents flowing through the
neuron’s membrane. Although being time consuming, the
parameters of these models can, in principle, be partially
obtained through measurements. However, complete and
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accurate estimation of their parameters for a single living
cell is hardly practicable.

Because of these complications, a number of mathematical
models that mimic the spiking behavior of real neurons are
introduced throughout the years, e.g. the Hindmarsh-Rose [4]
and Fitzhugh-Nagumo [5] neuronal models. These models
are simpler in structure and in the number of parameters.
Their parameters, however, have no immediate physical
interpretation. Hence, they cannot be measured explicitly in
experiments. It is showed by Izhikevich [6] that the mathe-
matical models can, depending on their specific parameters,
cover a wide range of the dynamics that have been observed
in real neurons. Furthermore, they have the advantage of
simplicity. This makes model identification an easier task.

Here, we aim at providing a method that allows a suc-
cessful mapping of mathematical neuronal models to the
vast collection of available empirical data. However, fitting
these models to given input-output data is a hard technical
problem. This is because the internal, non physical, states of
the system are not available, and the input-output information
that is available is often deficient. Yet, to successfully model
the measured data one needs to reconstruct the unknown
states and estimate the parameters of the system simultane-
ously.

The problem of estimating the state and parameter vectors
for a given nonlinear system from input-output data is a well
established field in system identification [7] and adaptive
control [8]. It has a broad domain of relevant applications
in physics and engineering, and efficient recipes for solving
practical problems are available. In most cases, when state
and parameter identification is required, these methods apply
to a rich class of systems that can be transformed into the
so-called canonical adaptive observer form [9]:

ẋ = Rx + ϕ(y(t), t)θ + g(t),

R =
(

0 kT

0 F

)
, x = (x1, . . . , xn),

y(t) = x1(t).

(1)

In (1), the functions g : R≥0 → Rn, ϕ : R×R≥0 → Rn×Rd

are assumed to be known, k = (k1, . . . , kn−1) is a vector
of known constants, F is a known (n− 1)× (n− 1) matrix
(usually diagonal) with eigenvalues in the left half-plane of
the complex domain, and θ ∈ Rd is a vector containing the
unknown parameters. Algorithms for the asymptotic recovery
of the state variables and the parameter vector θ can be found
in, for instance, [9], [10], [11].

Models of neural dynamics, however, typically do not



belong to class (1), and cannot be transformed into this
specific form. Consider, for instance, the following spiking
oscillator models:

ẋ0 = θ0,2x
3
0 + θ0,1x

2
0 + x1 − x2 + θ0,0 + g(t),

ẋ1 = −λ1x1 + θ1,1x
2
0 + θ1,0,

ẋ2 = −λ2x2 + θ2,1x0 + θ2,0,

(2)

{
ẋ0 = θ0,2x

3
0 + θ0,1x0 − x1 + θ0,0 + g(t),

ẋ1 = −λ1x1 + θ1,1x0 + θ1,0.
(3)

Systems (2), (3) are, respectively, the well-known
Hindmarsh-Rose [4] and Fitzhugh-Nugamo [5] models
for neuronal activity. The parameters θi,j , λi are unknown.
In the notations of (1) this corresponds to the situation
that matrix F is uncertain. So these models are not in the
observer canonical form. Hence new methods for estimating
the unknown θi,j , λi for the relevant classes of systems (2),
(3) are required.

In this paper we focus in particular on the estimation
of the parameters of the Hindmarsh-Rose model. We start
with presenting a slight modification of the model (2) and
summarize some basic proporties of this model. Second, we
consider this modified system and we develop a procedure
allowing successful fitting of the model to measured data.
Third, we demonstrate how our approach can be used for
the reconstruction of the spiking dynamics of single neurons
in slices of hippocampal tissue in vitro.

The paper is organized as follows. In Section II we intro-
duce the modified Hindmarsh-Rose model and we present the
notations that will be used throughout this paper. Section III
contains formal statement of the identification problem. In
Section IV we describe our parameter estimation procedure
and we give sufficient conditions for convergence of the
estimates. Section V describes the details of the application
of this procedure to the problem of reconstructing the spikes
of hippocampal neurons from mice. In Section VI we discuss
these results, and Section VII concludes the paper.

II. PRELIMINARIES

Consider the following slight modification of the
Hindmarsh-Rose equations (2):

ẋ0 = θ0,3x
3
0 + θ0,2x

2
0 + θ0,1x0 + θ0,0

+ x1 − x2 + g(t),

ẋ1 = −λ1x1 + θ1,2x
2
0 + θ1,1x0 + θ1,0,

ẋ2 = −λ2x2 + θ2,1x0 + θ2,0,

(4)

where θi,j are unknown constant parameters and λ1, λ2

are the unknown time constants of the internal states. The
state x0 represents the membrane potential, x1 is a fast
internal variable, x2 is a slow variable (λ2 � 1) and g(t)
is an external applied clamping current. The system (4) has,
compared to the original equations (2), a full third order
polynomial of x0 in the first equation and a full order
second order polynomial of x0 in the second equation. The
modified model can adapt to arbitrary time-scales and has
less restrictions on the shape of the spikes.

The specific behavior of the Hindmarsh-Rose model can
be analyzed by decomposition into fast and slow subsystems
(see for instance [12], [13]), where the fast subsystem is
composed by the states x0 and x1, and the slow subsystem
is given by state x2. Hence, the following proporties hold
for the Hindmarsh-Rose system:

1) the shape of the spikes is mainly determined by the
fast subsystem,

2) the firing frequency of the spikes in absence of the
slow subsystem (x2 = 0) is dictated by the amplitude
of the external current g(t),

3) the third equation, i.e. the slow variable, perturbs the
input g(t) and modulates the firing frequency such that,
depending on the parameters, the model can produce
periodic bursts, aperiodic bursts or spiking behavior;
firing frequency is adaptable.

For the sake of convenience, we introduce some notations
that will be used throughout the paper. The symbol R denotes
the real numbers, R>0 = {x ∈ R | x > 0}. The symbol Z
denotes the set of integers. Consider the vector x ∈ Rn that
can be partitioned into two vectors x1 ∈ Rp and x2 ∈ Rq,
p+q = n, then ⊕ denotes their concatenation, i.e. x1⊕x2 =
x. The Euclidian norm of x ∈ Rn is denoted by ‖x‖. Finally,
let ε ∈ R>0, then ‖x‖ε stands for the following:

‖x‖ε =
{
‖x‖ − ε, ‖x‖ > ε,
0, ‖x‖ ≤ ε.

III. PROBLEM FORMULATION

Consider the following class of nonlinear neuronal models:

ẋ0 = θT
0 φ0(x0(t), t) +

n∑
i=1

xi,

ẋi = −λixi + θT
i φi(x0(t), t),

(5)

where

φi : R× R≥0 → Rdi , di ∈ N\{0}, i = {0, . . . , n}

are continuous functions. Variable x0 in system (5) represents
the dynamics of the cell’s membrane potential, variables xi,
i ≥ 1 are internal states that can be associated with the ionic
currents flowing in the cell and the parameters θi ∈ Rdi ,
λi ∈ R>0 are constant. Clearly, the models (2)–(4) belong
to the particular class of systems (5).

The values of the variable x0(t) are assumed to be avail-
able at any instance of time and the functions φi(x0(t), t)
are supposed to be known. The variables xi, i = {1, . . . , n},
however, are not available. The actual values of the pa-
rameters θ0, . . . , θn, λ1, . . . , λn, are unknown a-priori. We
assume that domains of admissible values of θi, λi are known
or can at least be estimated. In particular, we consider the
case where θi ∈ [θi,min, θi,max], λi ∈ [λi,min, λi,max], and
the values of θi,min, θi,max, λi,min, λi,max are available.

For notational convenience we denote

θ = θ0 ⊕ θ1 ⊕ · · · ⊕ θn, λ = λ1 ⊕ · · · ⊕ λn,



the vectors θ̂ and λ̂ denote the estimations of θ and λ, and
the domains of θ, λ are given by the symbols Ωθ and Ωλ,
respectively.

The problem is how to derive an algorithm which is ca-
pable of reconstructing the states and estimate the unknown
parameters of the system (5) solely depending on the signal
x0(t). In the present work we consider this problem within
the framework of designing an observer for the dynamics
and parameters of (5) that is driven by the measured signal
x0(t) and has dynamics of the form:

˙̂x = f(x̂, z, x0(t)),
z = h(x̂),

(6)

where x̂ ∈ Rn is the approximation of states of the system
(5) and z = θ̂⊕λ̂ contains estimates of the parameters of the
system. Hence, the goal is to find conditions such that for
some given small numbers δx, δz ∈ R>0 and all t0 ∈ R≥0

the following properties hold:

∃ t′ ≥ t0 s.t. ∀ t ≥ t′ :

{
‖x̂(t)− x(t)‖ ≤ δx,

‖z(t)− ϑ‖ ≤ δz.
(7)

where x = [x0, . . . , xn]T and ϑ = θ ⊕ λ.

IV. MAIN RESULTS

Let us first, for notational convenience, introduce the
following function

φ(x0(t),λ, t) =

φ0(x0(t), t)
n⊕

i=1

∫ t

0

e−λi(t−τ)φi(x0(τ), τ)dτ.
(8)

This function φ(x0(t),λ, t) is a concatenation of φ0(·) and
the integrals∫ t

0

e−λi(t−τ)φi(x0(τ), τ)dτ, i = {1, . . . , n}. (9)

Then, using (8), the system (5) can be written in the more
compact form:

ẋ0 = θT φ(x0(t),λ, t). (10)

Given that functions φi(·) are known and that the values
of x0(τ), τ ∈ [0, t] are available, the integrals (9) can
be calculated explicitly as functions of λi and t. Taking
into account that the time variable t can be arbitrarily
large, explicit calculation of integrals (9) is expensive in
the computational sense and, in principle, requires infinitely
large memory. For this reason approximation of the function
φ(x0(t),λ, t) is used.

In the case that the signal x0(t) is periodic, bounded, and
the functions φi(x0(t), t) are locally Lipschitz in x0 and
periodic in t with the same period, the functions φi(x0(t), t)
can be expressed in a Fourier series expansion:

φi(x0(t), t) =

ai,0

2
+

∞∑
j=1

(ai,j cos(ωjt) + bi,j sin(ωjt)) .
(11)

Taking a finite number N of members from the series
expansion (11), the following approximation of (9) holds:∫ t

0

e−λi(t−τ)φi(x0(τ), τ)dτ '

a0,i

2λi
+

N∑
j=1

ai,j

λ2
i + ω2

j

(sin(ωjt)ωj + λi cos(ωjt))

+
N∑

j=1

bi,j

λ2
i + ω2

j

(− cos(ωjt)ωj + λi sin(ωjt)) + ε(t),

(12)

where ε(t) : R≥0 → R is an exponentially decaying term.
In the case that the signal x0(t) is not periodic in t or the

functions φi(x0(t), t) are not periodic in t, the integrals (9)
can be approximated as:∫ t

0

e−λi(t−τ)φi(x0(τ), τ)dτ '∫ t

t−T

e−λi(t−τ)φi(x0(τ), τ) + ε(t),

where T ∈ R > 0 is sufficiently large.
Let the function φ̄(x0(t), λ̂, t) be the computationally real-

izable approximation of (8) such that φ̄(x0(t), λ̂, t) satisfies:

‖φ̄(x0(t), λ̂, t)− φ(x0(t), λ̂, t)‖ ≤ ∆,

for all t ∈ R>0 and some small ∆ ∈ R>0.
Consider the following observer that estimates the states

and the parameters θ of the systems (10): ˙̂x0 = −α(x̂0 − x0) + θ̂
T
φ̄(x0, λ̂, t),

˙̂
θ = −γθ(x̂0 − x0)φ̄(x0, λ̂, t), γθ, α ∈ R>0.

(13)

Defining
q = (x̂0 − x0)⊕ (θ̂ − θ),

the closed loop system (10), (13) can be written as

q̇ = A(x0(t), λ̂(t), t)q + b u(x0(t),λ, λ̂, t), (14)

where

A(x0(t), λ̂(t), t) =(
−α φ̄(x0(t), λ̂(t), t)T

−γθφ̄(x0(t), λ̂(t), t) 0

)
,

b = (1, 0, . . . , 0)T ,

and

u(x0(t), λ̂,λ, t) = θT (φ̄(x0(t), λ̂, t)− φ̄(x0(t),λ, t))

+ θT (φ̄(x0(t),λ, t)− φ(x0(t),λ, t)).

The closed loop system (14) consists of the time-varying
linear system q̇ = A(·, ·, ·)q which is perturbed by the
function u(x0(t), λ̂,λ, t). Note, in addition, that

lim sup
λ̂→λ

‖u(x0(t), λ̂,λ, t)‖ ≤ ‖θ‖∆.
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Fig. 1. The interconnected systems S1 and S2.

The control problem is now, in terms of (7), to find values λ̂
close to λ, and conditions such that lim

t→∞
‖q(t)‖ ≤ δq, with

small δq ∈ R>0.
Let, therefore, the components of vector λ̂ evolve accord-

ing to the following equations:

ξ̇1,i = γiσ(‖x0 − x̂0‖ε) ·(
ξ1,i − ξ2,i − ξ1,i

(
ξ2
1,i + ξ2

2,i

))
,

ξ̇2,i = γiσ(‖x0 − x̂0‖ε) ·(
ξ1,i + ξ2,i − ξ2,i

(
ξ2
1,i + ξ2

2,i

))
,

λ̂i(ξ1,i) = λi,min +
λi,max − λi,min

2
(ξ1,i + 1),

(15)

ξ̂2
1,i(t0) + ξ̂2

2,i(t0) = 1, (16)

where i = {1, . . . , n}, σ(·) : R → R≥0 is a bounded
function, i.e. σ(s) ≤ S ∈ R>0, and |σ(s)| ≤ |s| for all
s ∈ R. The constants γi ∈ R>0 and let γi be rationally-
independent, i.e.: ∑

γiki 6= 0, ∀ ki ∈ Z.

The systems (15) with initial conditions (16) are forward-
invariant on the manifold ξ2

1,i(t) + ξ2
2,i(t) = 1. Taking into

account that the constants γi are rationally-independent, we
can conclude that trajectories ξ1,i(t) densely fill an invari-
ant n-dimensional torus [14]. In other words, the system
(15) with initial conditions (16) is Poisson-stable in Ωx =
{ξ1,i, ξ2,i ∈ R2n|ξ1,i ∈ [−1, 1]}. Furthermore, notice that
trajectories ξ1,i(t), ξ2,i(t) are globally bounded and that the
right-hand side of (15) is locally Lipschitz in ξ1,i, ξ2,i. Hence
the following estimate holds:

‖ ˙̂
λ(t)‖ ≤ γ∗M, M ∈ R>0, γ∗ = max

i
{γi}.

We may consider (14) and (15) as two interconnected
systems S1 and S2, respectively. The system S2 takes values
λ̂ from the compact domain Ωλ as function of the output of
the system S1. These values λ̂ are, in turn, injected into the
system S1. The system S1 is driven by the measured data
and the estimates λ̂ and will provide estimates of the state
x0(t) and the parameters θ. A schematic representation of
the structure of these interconnected systems is provided in
Fig. 1.

We will now pose conditions such that the solutions of
the system S1 converge to an invariant attracting set in the
neighborhood of the origin. In particular, we will show that

the systems (13), (15) serve as the desired observer (6) for the
class of systems specified by equations (5), i.e. the proporties
of (7) are satisfied. Our result is based on the concept of
non-uniform convergence [15], [16], non-uniform small-gain
theorems [17], and the notion of λ-uniform persistency of
excitation:

Definition 1 (λ-uniform persistency of excitation [18]):
Let function ϕ : D0 × D1 × R≥0 → Rn×m be continuous
and bounded. We say that ϕ(σ(t),λ, t) is λ-uniformly
persistently exciting (λ-uPE) if there exist µ,L ∈ R>0 such
that for each σ(t) ∈ D0, λ ∈ D1∫ t+L

t

ϕ(σ(t),λ, t)ϕ(σ(t),λ, t)T dτ ≥ µI, ∀t ≥ 0.

The latter notion, in contrast to the conventional definitions
of persistency of excitation, allows us to deal with the
parameterized regressors ϕ(σ(t),λ, t). This is essential for
deriving the asymptotic properties of the interconnected S1,
S2 systems. These properties are formulated in the theorem
below:

Theorem 1: Let the systems (10), (13), (15) be given.
Assume that function φ̄(x0(t),λ, t) is λ-uPE, bounded, i.e.
‖φ̄(x0(t),λ, t)‖ ≤ B for all t ≥ 0 and λ ∈ Ωλ, and
Lipschitz in λ:

‖φ̄(x0(t),λ, t)− φ̄(x0(t),λ′, t)‖ ≤ D‖λ− λ′‖.

Then there exist a number γ∗ satisfying

γ∗ =
µ

4BDLM
,

and a constant ε > 0 such that for all γi ∈ (0, γ∗]:

1) the trajectories of the closed loop system (13), (15) are
bounded;

2) there exists a vector λ∗ ∈ Ωλ: limt→∞ λ̂(t) = λ∗;
3) there exist positive constants κ = κ(α, γ0) and δ such

that the following estimates hold:

lim sup
t→∞

‖θ̂(t)− θ‖ < κ(Dδ + 3∆),

lim
t→∞

|λ̂i(t)− λi| < δ,

lim
t→∞

‖x̂0(t)− x0(t)‖ε = 0.

The proof of Theorem 1 is based on Theorem 1 and
Corollary 4 in [17]. Its details are made available in [19].

Theorem 1 assures that the estimates θ̂(t), λ̂(t) converge
to a neighborhood of the actual values θ, λ asymptotically.
Given that ‖x̂0(t)− x0(t)‖ε → 0 as t →∞, the size of this
neighborhood can be specified as a function of the parameter
ε. The value of ε in turn depends on the amount of noise in
the driving signal, and the values of ∆ and γi (the smaller
the ∆, γi the smaller the ε) such that the former, taking
the presence of noise into account, can in principle be made
sufficiently small.



V. EXPERIMENTAL VALIDATION

Let us demonstrate how these results can be applied to the
problem of estimating the parameters of a neuronal model
from in vitro measurements of single neurons. In particular,
we construct an algorithm that allows fitting the modified
Hindmarsh-Rose model (4) to a spike train recorded from
real neural cells in slices of hippocampal tissue of mouse.
Since the measured signal contains solely spiking dynamics
we can neglect the third equation of the Hindmarsh-Rose
model, i.e. the slow variable. Hence, the problem reduces to
finding the parameters θ0,0, θ0,1, θ0,2, θ0,3, θ1,0, θ1,1, θ1,2,
λ1 of the reduced version of (4):{

ẋ0 = θ0,3x
3
0 + θ0,2x

2
0 + θ0,1x0 + θ0,0 + x1 + g(t),

ẋ1 = −λ1x1 + θ1,2x
2
0 + θ1,1x0 + θ1,0.

(17)

In our experimental data the input function g(t) was a
constant current such that g(t), in this case, can be contained
in the parameter θ0,0. Notice also that the value of θ1,0 can
be aggregated into the parameter θ0,0. Thus instead of (17)
we obtain the following equations:{

ẋ0 = θ0,3x
3
0 + θ0,2x

2
0 + θ0,1x0 + θ∗0,0 + x1,

ẋ1 = −λ1x1 + θ1,2x
2
0 + θ1,1x0.

(18)

From (13), (15) and Theorem 1 the following system is
capable of estimating the unknown parameters of (18):

˙̂x0 = −α(x̂0 − x0(t)) + θ̂
T
φ̄0(x0(t), λ̂1(t), t),

˙̂
θ = −γθ(x̂0 − x0(t))φ̄0(x0(t), λ̂1(t), t),

λ̂1(t) = λ1,min +
λ1,max − λ2,min

2
(ξ1,1(t) + 1),

ξ̇1,1 = γ1σ(‖x̂0 − x0(t)‖ε) ·(
ξ1,1 − ξ2,1 − ξ1,i

(
ξ2
1,1 + ξ2

2,1

))
,

ξ̇2,1 = γ1σ(‖x̂0 − x0(t)‖ε) ·(
ξ1,1 + ξ2,1 − ξ2,1

(
ξ2
1,1 + ξ2

2,1

))
,

σ(·) = arctan(·).

(19)

In (19) the vector θ̂ is the estimate of θ =
(θ∗0,0, θ0,1, θ0,2, θ0,3, θ1,1, θ1,2)T , and λ̂1 is the estimate of
λ1. The function φ̄0(x0(t), λ̂1, t) in (19) is the computation-
ally realizable approximation of

φ(x0(t), λ̂1, t) =



1
x0(t)
x2

0(t)
x3

0(t)∫ t

0
e−λ̂1(t−τ)x0(τ)dτ∫ t

0
e−λ̂1(t−τ)x2

0(τ)dτ

 . (20)

Given that x0(t) is periodic, the Fourier-series expansion
(12) is used to approximate (20). The domain Ωλ is defined
as Ωλ = [0.5, 2.5] with λmin = 0.5 and λmax = 2.5,
respectively. The Fourier-approximation (12) of (20) is per-
sistently exciting for all λ̂1 ∈ Ωλ. In simulations we used
the following set of parameters γθ = 3, γ1 = 0.02/π,
α = 20, and ε = 0.12. The trajectories of the estimates

2.5
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0.5

0.40 0.8 1.2 1.6
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l(0) = 1.5

l(0) = 0.5

l(0) = 0.8

t

l

<

<

<

<

<

10
6

X

Fig. 2. Top panel – trajectories λ̂(t) as functions of time for different
values of initial conditions. Bottom panel – trajectory x̂0(t) of system (18)
with parameters (22) (solid line) plotted against the actual data (dashed
line).

λ̂1(t) for various initial conditions are shown in the top panel
of Fig. 2. We observe that trajectories λ̂1(t) converge to a
bounded domain in the interval [2, 2.4]. For each value of λ̂1

the estimates θ̂ converge to a bounded domain as well. For
example, for the trajectory starting at λ̂1(0) = 0.5 we have

θ̂0,3 ∈ [−10.4,−10.25], θ̂0,2 ∈ [−4.45,−4.3],

θ̂0,1 ∈ [6.6, 6.75], θ̂∗0,0 ∈ [0.75, 0.95],

θ̂1,2 ∈ [−32.5,−32.4], θ̂1,1 ∈ [−32.2,−32.1].

(21)

The range of the estimates (21) corresponds to the amount of
uncertainty of in the system (18). We found that the following
choice of parameters θ̂, λ̂1:

θ̂0,3 = −10.4, θ̂0,2 = −4.35, θ̂0,1 = 6.65,

θ̂∗0,0 = 0.9125, θ̂1,2 = −32.45, θ̂1,1 = −32.15,

λ̂1 = 2.027,

(22)

results in rather accurate fitting. The reconstructed trajectory
x̂0(t) with the parameters (22) is shown in the bottom
panel of Fig. 2. Notice that despite the presence of small
mismatches along the trajectories, the amplitude and the



shape of the spikes do closely follow the measured response
of the hippocampal neuron.

VI. DISCUSSION

We showed that the spiking dynamics measured from a
single neuron from the hippocampal area of mouse can be
reconstructed with the modified Hindmarsh-Rose model (4).
Moreover, the estimated parameters of the model converge
to small bounded domains. The size of these domains can,
in principle, be decreased by assigning a smaller value
to the parameter ε. However, it might be possible that
the model is not accurate enough to describe the spikes
with such precision. The fact that the modified model’s
parameters θ0,1, θ1,1 6= 0 indicates that the equations of the
original Hindmarsh-Rose model are too restricted for proper
parameter fitting and our choice to use the modified model
is justified.

We considered a simplified case where the clamping
current applied to the neuron was constant and the neuron
produced simple spiking behavior. In general, the output
function of neurons is more complicated. Bursting sequences,
for instance, are noticed in neurons of the pond snail Lym-
naea [4] and firing frequency adaptation often occurs when
the neuron is stimulated with block shaped currents. In order
to mimic this more complicated behavior, the full set of
equations of the modified Hindmarsh-Rose model should be
taken into account.

VII. CONCLUSION

We presented a method to estimate the parameters of sys-
tems that can not be transformed into the observer canonical
form. The proposed method can be applied to systems that
are of the class (5), such as (mathematical) models that
mimic neuronal behavior. We demonstrated a direct applica-
tion of the method by means of a successful reconstruction
of the states and estimations of the parameters of a modified
Hindmarsh-Rose model driven by spikes recorded from a
single neuron in vitro.
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