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Abstract— The automatic control method for synchronization
- desynchronization is used in ensembles of interconnected os-
cillators. Our approach is based on the principles of automatic
feedback control for locally diffusive coupled elements. This
way automatic control is achieved for low coupling and this is
demonstrated for coupled regular oscillators.

I. I NTRODUCTION

In the recent years, the synchronization - desynchroniza-
tion in spatially extended regular and chaotic systems in
nature and technology has attracted wide interest [1]. Con-
struction of modern communication systems, radio-location
complexes, networks of coupled power generators and lasers,
etc., is impossible without making use of synchronization-
desynchronization. In this connection the problem of design
of optimal inter-element coupling schemes is very impor-
tant. Despite on the great variety of possible applications
three main cases of synchronization can be distinguished:
(i) synchronization of oscillatory systems by anexternal
signal; (ii) mutualsynchronization of bidirectionally coupled
oscillators; (iii) synchronization of coupled oscillators with
the help of afeedback loopperforming automatic phase and
(or) frequency control. In the latter case the presence of a
special control loop and bidirectional coupling makes the re-
sulting automatic synchronization-desynchronization scheme
rather versatile and reliable, making it widely applicable in
technology.

In this paper we demonstrate an automatic control method
of phase locking [1] in the network of regular non-identical
oscillators, when the pairs of elements interact by a feedback
[2] and by a local diffusive coupling. This method is basing
on the well known principle of feedback control used in
phase-locked loops (PLL) [3]. Our approach supposes the
existence of a diffusive coupling and the special controllers,
which allow to change the parameters of the controlled
systems. First we present general principles of automatic
phase synchronization-disynchronization (PS) for arbitrary
coupled oscillators with diffusive coupling and controllers
whose inputs are given by the quadratic forms of coordinates
of the individual systems and its outputs are the results of
the application of a linear differential operators. Next we
give a simple example - coupled periodic oscillators - where
we approve analytically that these principles work. Then we
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demonstrate numerically the effectiveness of our approach
for locally coupled regular oscillators.

II. GENERAL PRINCIPLES OF AUTOMATIC

SYNCHRONIZATION-DESYNCHRONIZATION

First, we describe the automatic control method for the
case of ensemble of arbitrary regular or chaotic oscillators
given by the system:

ẋj = Fj(xj , ωj), j = 1, ..., N, (1)

wherexj and Fj are n-vectors,ωj are parameters defining
the time dependence rate (in some cases, frequencies) of
oscillations xj(t) and N is a number of oscillators. Our
purpose is to control synchronization - desinchronization of
the elements in a such ensemble using feedback control of
the time scales of coupled oscillators and diffusive coupling
in such a way that the new characteristic time scalesΩ−1

j

become equal (synchronization) or different (desynchroniza-
tion). Here Ωj are the mean observed frequencies of the
oscillators being controlled. In order to synchronize - desyn-
chronize coupled subsystems we apply feedback control and
diffusive coupling between nearest neighbors in the following
form [2]:

ẋj = Fj(xj , ωj + αjuj) + d(xj+1 − 2xj + xj−1),
Luj = Qj(x1, ..., xN ),
j = 1, ..., N,

(2)

whereL is a linear operator (e.g.,L = ak
dk

dtk +ak−1
dk−1

dtk−1 +
... + a1

d
dt + a0) acting as a low-pass filter; function

Qj(x1, ..., xN ) is the following:

Qj(x1, ..., xN ) =
N∑

k=1,k 6=j

Qk(xj , xk), (3)

whereQk is a quadratic formQk = xT
j Hxk characterized

the coupling betweenj-th and k-th oscillators. H is a
n × n matrix; αj are feedback controlling coefficients;d is
a diffusive coupling coefficient; anduj(t) are the control
variables added in (1) in such a way that it is able to change
the characteristic time scales of the interacting subsystems.
The spectrum of oscillations ofQk(xj , xk) consists of a
“low” part defined by the differenceΩk − Ωj and a “high”
part defined by the sumΩk + Ωj , which is damped by the
low-pass filter due to a specially designed transfer function.
Hence the control variableuj(t), being filtered, becomes a
slow-varying time function, whose spectrum is located in the
band [0, 2|Ωk − Ωj |]. We adduj(t) to the basic system (2)
in such a way that it may provide a balance of the new time



scales, i.e.Ωk = Ωj or vice versa this may desynchronize
our system if it was synchronized by local diffusive coupling,
i.e. Ωk 6= Ωj .

Next we demonstrate the automatic control method for
phase synchronization - desynchronization for ensemble of
locally coupled regular oscillators.

III. SYNCHRONIZATION-DESINCHRONIZATION OF

LOCALLY COUPLED REGULAR OSCILLATORS

As the simplest case we consider feedback control of phase
synchronization in ensemble oflocally mutually coupled
Poincaŕe systems:

ẋj = −(αjuj + ωj)yj − λ(x2
j + y2

j − 1)xj+
+d(xj+1 − 2xj + xj−1),
ẏj = (αjuj + ωj)xj − λ(x2

j + y2
j − 1)yj ,

u̇j = −uj + βj+1xjyj+1 + βj−1xjyj−1,
j = 1, ..., N,

(4)

whereωj are the frequencies andλ > 0 is a damping param-
eter of oscillators,uj is the control variable,αj andβj are
the parameters of thej-th controller,d are the parameters of
diffusive coupling. We assume free-end boundary conditions:
β0 = βN+1 = 0. For the quadratic formQj we take the
simplest form of coupling with nearest neighbors

Qj = βj+1xjyj+1 + βj−1xjyj−1 (5)

In this example we take the linear operatorL in the form
L = d

dt + 1. Using polar coordinatesxj = ρjcosφj , yj =
ρjsinφj , we rewrite (4) in the form:

ρ̇j = λρj(1− ρ2
j ) + d(ρj+1cosφj+1cosφj−

−2ρjcos
2φj + ρj−1cosφj−1cosφj),

φ̇j = αjuj + ωj − d
ρj

(ρj+1cosφj+1sinφj−
−2ρjcosφjsinφj + ρj−1cosφj−1sinφj),
u̇j = −uj + βj+1ρjρj+1cosφjsinφj+1+
βj−1ρjρj−1cosφjsinφj−1,
j = 1, ..., N

(6)

Let us take the gradient distribution of individual frequencies
ωj = ω1 + ∆(j − 1), andαj = α, βj = β, ρj = ρ. Then
introducing the phase difference variableθj = φj − φj+1,
β
2 ρ2 = β̂,d

2 = d̂,αβ
2 ρ2 = α̂ and averaging the system (6) we

obtain:

φ̇1 = αu1 + ω1 − d̂sinθ1,

u̇1 = −u1 − β̂sinθ1,

θ̇j = α(uj − uj+1) + ∆ + d̂(sinθj−1 − 2sinθj + sinθj−1),
u̇j = −uj − β̂(sinθj − sinθj−1),
j = 1, ..., N

(7)
with the boundary conditions:θ0 = θN = 0. Stable
steady state(θ̄1, ..., θ̄j , ...θ̄N−1) in system (7) corresponds
to a regime of the global synchronization in the chain.The
system of equations for the stationary phase differencesθ̄j
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Fig. 1. Mean frequenciesΩj in a chain of Poincaré systems with linear
distribution of individual frequencies versusd. The parameter of a feedback
control α = 0.2. The number of elementsN = 10, ω1 = 0.98, ∆ =
0.01, β = 1.
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Fig. 2. Mean frequenciesΩj in a chain of Poincaré systems with linear
distribution of individual frequencies versusd. The parameter of a feedback
control α = −0.2. The number of elementsN = 10, ω1 = 0.98, ∆ =
0.01, β = 1.

can be written as:

∆ + (α̂ + d̂)(sin θ̄2 − 2 sin θ̄1) = 0,

∆ + (α̂ + d̂)(sin θ̄j+1 − 2 sin θ̄j + sin θ̄j−1) = 0,
j = 2, ..., N − 2,

∆ + (α̂ + d̂)(sin θ̄N − 2 sin θ̄N−1) = 0
(8)

The distribution ofθ̄j is [4]:

sin θ̄j =
∆

2(α̂ + d̂)
(Nj − j2). (9)

From (9) follows that the system (7) can have2N−1 steady
states. Only one of then (θ̄j ∈ [−π/2; π/2] for all j =
1, ..., N − 1) is stable. As the frequency mismatch∆ is
increased, the condition of the existence of steady states:

| ∆

2(α̂ + d̂)
(N j − j2)| < 1 (10)

is violated first forj = N/2 at evenN , i.e. for the middle
element in the chain. Thus, the condition for the existence
of a stable steady state (8) in theN -element chain is given
by the inequality

| ∆N2

8(α̂ + d̂)
| < 1. (11)

Using conditions (10) we can control synchronization -
desynchronization transitions by the variation of the single
control parameterα or d.
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Fig. 3. Mean frequenciesΩj in a chain of Poincaré systems with linear
distribution of individual frequencies versusα. The parameter of a diffusive
coupling (a)d = 0.1, (b) d = 0.2, (c) d = 0.3 The number of elements
N = 10, ω1 = 0.98, ∆ = 0.01, β = 1.

In order to show our approach we present the results of
our numerical experiments.
In all experiments we take a chain of 10 Poincaré oscillators
with gradient distribution of individual frequencies (ωj =
ω1 + ∆(j − 1), ω1 = 0.98∆ = 0.01).
Experiment 1. Feedback couplingα is fixed (α = 0.2)
and diffusive coupling coefficientd is varied (Fig.1). For
d = 0 whole chain is divided into two groups (clusters) of
synchronized elements with mean frequenciesΩ̄1 ≈ 1.02
and Ω̄2 ≈ 1.04. With increase of diffusive couplingd the
frequencies become closer and ford > 0.075 the global
synchronization regime takes place.
Experiment 2. Feedback couplingα is fixed (α = −0.2)
and diffusive coupling coefficientd is varied (Fig.2). As
in the previous case frequencies tends to be different. For
d = 0 we observe two clusters in this system with mean
frequenciesΩ̄1 ≈ 1.02 and Ω̄2 ≈ 1.04. Next we switch on
diffusive couplingd. First we can see appearance of three
clusters (d = 0.04), then four clusters (d = 0.08) etc. For
d = 0.15 every oscillator has its own frequency and the
global non-synchronous regime sets in. With further increase
of diffusive coupling the collective behavior of units become

more regular and synchronous clusters appear. Ford > 0.4
regime of global synchronization is stable. So, by changing
the coupling it is possible to desynchronize the synchronous
behavior of coupled systems.
Experiment 3. Diffusive coupling coefficientd is fixed (d =
0.1) and feedback coupling parameter is varied (Fig.3 (a)).
For α = −0.5 system is synchronized and all oscillators
have the same frequencȳΩ ≈ 0.97. After increasing of
feedback coupling the mean frequency increases. Only in
the interval−0.4 < α < −0.2 there is no global and
cluster synchronization. For−0.2 < α < −0.1 the global
desynchronization regime takes place. With increasingα
synchronous clusters appears again and forα > 0.2 the
global synchronization is observed.
Experiment 4. Diffusive coupling coefficientd is fixed d =
0.2 and feedback coupling parameter is varied (Fig.3 (b)).
In this case the system has the same qualitative behavior as
in the previous case. Only initially (α = 0) there is two
synchronous clusters.
Experiment 5. Diffusive coupling coefficientd is fixed d =
0.3 and feedback coupling parameter is varied (Fig.3 (c)).
For α = 0 the system is fully synchronized. As in the two
previous cases increase ofα leads to more coherent behavior
but its decrease leads to break up of synchronous states first
and then to transition to cluster and global synchronization
at larger coupling strengths.
In such a way we can control the state of our system. We
can only change the strength of diffusive coupling or (and)
feedback control.
We tested our control scheme in the cases of locally forced
ensembles. With appropriate chosen parameters of feedback
control proposed method gives positive results.

IV. CONCLUSIONS

In conclusion, we have demonstrated for an ensembles
of coupled regular oscillators an automatic control method
for transitions (i) synchronization - desynchronization and
(ii) desynchronization - synchronization of regular oscilla-
tors. This method can be used for control synchronization-
desynchronization of oscillators of different nature (regular
or chaotic), and different topology. The control of syn-
chronization sets in at very small values of control pa-
rameters, which is very important from energetic point of
view. We suppose that our approach can be helpful for the
design of different schemes of automatic control method for
synchronization-desynchronization and could be applied to
communication, engineering and medicine.
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