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Abstract— The automatic control method for synchronization ~demonstrate numerically the effectiveness of our approach
- desynchronization is used in ensembles of interconnected os- for locally coupled regular oscillators.
cillators. Our approach is based on the principles of automatic
feedback control for locally diffusive coupled elements. This Il. GENERAL PRINCIPLES OF AUTOMATIC
way automatic control is achieved for low coupling and this is SYNCHRONIZATION-DESYNCHRONIZATION

demonstrated for coupled regular oscillators. ) . .
First, we describe the automatic control method for the

case of ensemble of arbitrary regular or chaotic oscillators
given by the system:

In the recent years, the synchronization - desynchroniza-
tion in spatially extended regular and chaotic systems in
nature and technology has attracted wide interest [1]. Cowherez; and F; aren-vectors,w, are parameters defining
struction of modern communication systems, radio-locatiothe time dependence rate (in some cases, frequencies) of
complexes, networks of coupled power generators and lasesscillations z;(t) and N is a number of oscillators. Our
etc., is impossible without making use of synchronizationpurpose is to control synchronization - desinchronization of
desynchronization. In this connection the problem of desigihe elements in a such ensemble using feedback control of
of optimal inter-element coupling schemes is very importhe time scales of coupled oscillators and diffusive coupling
tant. Despite on the great variety of possible applications such a way that the new characteristic time scﬂgfé
three main cases of synchronization can be distinguisheldecome equal (synchronization) or different (desynchroniza-
(i) synchronization of oscillatory systems by axternal tion). Here Q; are the mean observed frequencies of the
signal; (i) mutualsynchronization of bidirectionally coupled oscillators being controlled. In order to synchronize - desyn-
oscillators; (iii) synchronization of coupled oscillators withchronize coupled subsystems we apply feedback control and
the help of afeedback looperforming automatic phase anddiffusive coupling between nearest neighbors in the following
(or) frequency control. In the latter case the presence offarm [2]:
special control loop and bidirectional coupling makes the re-

I. INTRODUCTION

x'j:Fj(xj,wj), jzl,...,N, (1)

i = Fj(zj,wj + ajuj) + d(wjp1 — 225 + 35-1),

sulting automatic synchronization-desynchronization scheme J O,z ov) @)
rather versatile and reliable, making it widely applicable in "™ 1 JN Lo BN
technology. J B

In this paper we demonstrate an automatic control methaghere is a linear operator (e.gl, = akj% +ak_1% +
of phase locking [1] in the network of regular non-identical . a1% + ap) acting as a low-pass filter; function
oscillators, when the pairs of elements interact by a feedba@}(j(mh ...,xy) is the following:

[2] and by a local diffusive coupling. This method is basing

N
on the well known principle of feedback control used in _ _ _
phase-locked loops (PLL) [3]. Our approach supposes the Qslons o) = k 1Zk¢‘Qk(mj’mk)’ ©
=LR#)

existence of a diffusive coupling and the special controllers,
which allow to change the parameters of the controlledhere@; is a quadratic formQ;, = ijka characterized
systems. First we present general principles of automatibe coupling between;j-th and k-th ‘oscillators. H is a
phase synchronization-disynchronization (PS) for arbitrary x n matrix; «; are feedback controlling coefficiendsis
coupled oscillators with diffusive coupling and controllersa diffusive coupling coefficient; and,(¢) are the control
whose inputs are given by the quadratic forms of coordinatesriables added in (1) in such a way that it is able to change
of the individual systems and its outputs are the results dfie characteristic time scales of the interacting subsystems.
the application of a linear differential operators. Next werhe spectrum of oscillations of)x(z;, i) consists of a
give a simple example - coupled periodic oscillators - wher8ow” part defined by the differenc€&, — Q; and a “high”
we approve analytically that these principles work. Then wpart defined by the surfy;, + €2;, which is damped by the
low-pass filter due to a specially designed transfer function.
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scales, i.ef);, = Q; or vice versa this may desynchronize
our system if it was synchronized by local diffusive coupling
i.e. Qp # Q.

Next we demonstrate the automatic control method for

phase synchronization - desynchronization for ensemble
locally coupled regular oscillators.

IIl. SYNCHRONIZATION-DESINCHRONIZATION OF
LOCALLY COUPLED REGULAR OSCILLATORS

As the simplest case we consider feedback control of pha§

synchronization in ensemble décally mutually coupled
Poincagé systems:

;= —(ajuj +wj)y; — Maf + 5 — D+
+d(l‘j+1 — 21’]‘ —+ l’j_l),

yj = (ijuj' + Wj)l'j — )\(.’ﬂ? + yf - 1)yj, (4)
U = —u; + Bj41%Yj4+1 + Bi-1%5Y5-1,
j=1,..,N,

wherew; are the frequencies and> 0 is a damping param-
eter of oscillatorsy; is the control variableq; and 8; are
the parameters of thgth controller,d are the parameters of

diffusive coupling. We assume free-end boundary conditions:

Bo = Bn4+1 = 0. For the quadratic forn@); we take the
simplest form of coupling with nearest neighbors

Qj = Bjr1zyj+1 + Bj-175y51 )]
In this example we take the linear operatbrin the form
L = & 4+ 1. Using polar coordinates; = p;cos¢;,y; =
pjsing;, we rewrite (4) in the form:

pj = Apj(L = p3) + d(pjr1c05¢11c050;—
T2pj0052¢j + pj_1c08¢;_1c059;),

¢ = auj +w; — pij(pj+1cos¢j+1sin¢j—
—2pjcospjsing; + pj_1c0s¢pj_15ing;),
Uy = —uj + Bj1100j4+1€05¢;5in¢j 1+
Bij—1pjpj—1c0sd;sing;_1,

J=1..N

(6)

Let us take the gradient distribution of individual frequenciegigtes. Only one of thenﬂ_]( € [~n/2;7/2] for all j

wj =w +A(—1),ande; = «, 85 = 5, p; = p. Then
introducing the phase difference varialfle = ¢, — ¢;1,

8p? = p,4 = d,%L p? = & and averaging the system (6) we
obtain:

(,2.51 = ouy +wi — Jsin@l,

’1.141 = —Uyp — Bsinﬁh

(9.]‘ = oz(uj — Uj+1) + A+ d(sine‘j,l — 252’n9j + SiTLej,l),

L.Lj = —Uu; — B(S’LTLGJ - sinGj_l),

j=1,..,N

(7)

with the boundary conditionsly = 65 = 0. Stable

steady statg6,...,0;,...0n_1) in system (7) corresponds
to a regime of the global synchronization in the chain.Th
system of equations for the stationary phase differefiges

1.04¢
:,
L

1.035f ™

1.03F

(@]
of 1.025

Ea
1.02"

0.5

ig- 1. Mean frequencie®; in a chain of Poincdr systems with linear
istribution of individual frequencies versds The parameter of a feedback
control @ = 0.2. The number of elementd = 10, w; = 0.98, A =
0.01,8 = 1.
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Fig. 2. Mean frequencie€; in a chain of Poincdr systems with linear
distribution of individual frequencies versds The parameter of a feedback
control & = —0.2. The number of element® = 10, w; = 0.98, A =
0.01,8 = 1.

can be written as:

A + (& + d)(sin Oy —2sin ;) = 0,
A + (d + d)(SiIl éj+1—281n §j+sin éj_l) = 0,
7=2,...,N—2,
A + (& + d)(sin Oy —2sin Oy_1) = 0

(8)
The distribution off); is [4]:
- A

sin 0; = ———(Nj — j?). 9

j 2(&+d)(1 J7) (©)

From (9) follows that the system (7) can ha®&~! steady

1,....,N — 1) is stable. As the frequency mismatch is
increased, the condition of the existence of steady states:
A
| ——— (N
2(a+ d)

is violated first forj = N/2 at evenN, i.e. for the middle

j—il<1 (10)

element in the chain. Thus, the condition for the existence

of a stable steady state (8) in tldé-element chain is given
by the inequality

AN?
8(é + d)
Using conditions (10) we can control synchronization -

eesynchronization transitions by the variation of the single
control parametew or d.

\ | <1 (11)



1.1 ‘ more regular and synchronous clusters appear.dFsr0.4
regime of global synchronization is stable. So, by changing
the coupling it is possible to desynchronize the synchronous
behavior of coupled systems.
Experiment 3 Diffusive coupling coefficient! is fixed ( =
0.1) and feedback coupling parameter is varied (Fig.3 (a)).
For « = —0.5 system is synchronized and all oscillators
have the same frequendy ~ 0.97. After increasing of
feedback coupling the mean frequency increases. Only in
the interval -0.4 < «a < —0.2 there is no global and
cluster synchronization. For0.2 < o < —0.1 the global
desynchronization regime takes place. With increasing
synchronous clusters appears again anddor- 0.2 the
global synchronization is observed.
Experiment 4 Diffusive coupling coefficient! is fixed d =
0.2 and feedback coupling parameter is varied (Fig.3 (b)).
In this case the system has the same qualitative behavior as
o5 in the previous case. Only initiallyo( = 0) there is two
synchronous clusters.
Experiment 5 Diffusive coupling coefficient is fixed d =
0.3 and feedback coupling parameter is varied (Fig.3 (c)).
For a = 0 the system is fully synchronized. As in the two
. ] previous cases increase®@leads to more coherent behavior
..................................................... but its decrease leads to break up of synchronous states first
- ] and then to transition to cluster and global synchronization
at larger coupling strengths.
% In such a way we can control the state of our system. We
° os can only change the strength of diffusive coupling or (and)
c) o feedback control.
Fig. 3. Mean frequencie€; in a chain of Poincar systems with linear We tested our control scheme in the cases of locally forced
distribution of individual frequencies versus The parameter of a diffusive  ensembles. With appropriate chosen parameters of feedback

coupling (a) = 0.1, (b) d = 0.2, (¢) d = 0.3 The number of elements control proposed method gives positive results.
N =10, w1 = 0.98, A =0.01,8 = 1.
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IV. CONCLUSIONS

In conclusion, we have demonstrated for an ensembles
In order to show our approach we present the results Qf Coupled regular oscillators an automatic control method

our numerical experiments. for transitions (i) synchronization - desynchronization and
In all experiments we take a chain of 10 Poirecascillators (i) desynchronization - synchronization of regular oscilla-
with gradient distribution of individual frequencies)( =  tOrs. This method can be used for control synchronization-
w1 + A —1),w; = 0.98A = 0.01). desynchronization of oscillators of different nature (regular

Experiment 1 Feedback couplingy is fixed @ = 0.2) or chaotic), and different topology. The control of syn-

and diffusive coupling coefficient is varied (Fig.1). For chronization Sets In at very small values of gontrql pa-

d = 0 whole chain is divided into two groups (clusters) offameters, which is very important from energetic point of

synchronized elements with mean frequendias~ 1.02  view. We suppose that our approach can be helpful for the

and O, ~ 1.04. With increase of diffusive coupling the design of different schemes of automatic control method for

frequencies become closer and fér> 0.075 the global synchronization-desynchronization and could be applied to

synchronization regime takes place. communication, engineering and medicine.

Experiment 2 Feedback couplingy is fixed (@ = —0.2)

and diffusive coupling coefficient! is varied (Fig.2). As | A S. Pikovsky, M. G. Rosenbl 4 3. KurthsSynchronizati

: : H H . 9. PIKovsky, M. . Rosenblum, an . Kurtl yncl ronization

in the previous case frequenCIeS_ te“‘?'s to be dlff,erem' FCJ[fL - A universal concept in Nonlinear SciencesCambridge University

d = 0 we qbserve two clu_sters in this system with mean  press, Cambridge, 2001;

frequencies?; ~ 1.02 and Q2; ~ 1.04. Next we switch on [2] \2/-081- Begkh,oG-(;/bé)Siipovi N. Kuckinder, and J. Kurths Physica D,

: ; ; ; , pp.81-104, 5

diffusive COUplmgd' First we can see appearance of three[3] W. C. Lindsey,Synchronization Systems in Communication and Con-

clusters § = 0.04), then four clustersd = 0.08) etc. For trol (Prentice-Hall, Englewood Cliffs, NJ, 1972).

d = 0.15 every oscillator has its own frequency and the [4] VéSb/IAfraigﬂovich, Vol l\(ljeg]rkin, G.’\\l/. Olsipov, Snd?]/. D. Shalfeﬁv,
_ ; ; ; ; “Stability, Structures an aos in Nonlinear Synchronization Net-

glopal non synch_ronous regime sets in. Wlth further increase 1< World Scientific, Singapore, 1994.

of diffusive coupling the collective behavior of units become
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