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Abstract

The paper presents an analysis of the approach to the
numerical study of vacuum microwave electronic sys-
tems by finite-difference time-domain (FDTD) method.
The results on approximating the boundary between two
materials are presented. The influence of changes in the
geometric shape of the resonator on the frequency ob-
tained in the numerical experiment is analyzed. The sen-
sitivity of the boundary approximation methods to small
changes in geometric parameters is investigated.
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1 Introduction

One of the most effective methods for studying vac-
uum and plasma electronics systems is numerical sim-
ulation using modern computing technologies[Birdsall
and Langdon, 2005; Kurkin et al., 2018; Aminov and
Ovsyannikov, 2015]. The most perfect and demanded at
the moment here are three-dimensional fully electromag-
netic codes, in which Maxwell equations are numerically
solved to find self-consistent electromagnetic fields in
the system, and the large particle method (PIC-method)
is used to model the dynamics of charged particle beam
[Birdsall and Langdon, 2005; Kurkin et al., 2018; Alt-
sybeyev et al., 2016; Rashchikov, 2014; Polozov and
Rashchikov, 2018; Camporeale et al., 2016; Bottino and
Sonnendriicker, 2015; Frolov et al., 2016; Badarin et al.,

2018]. This approach complements well and replaces
to some extent experimental research, especially at the

stages of development of prototypes of new devices, as
well as optimization of existing ones. The calculation of
the intrinsic electromagnetic fields of the electron beam
and electrodynamic systems is based on the joint solu-
tion of the Vlasov kinetic equation for the electron dis-
tribution function and Maxwell equations.

The essence of the method is to divide the problem into
two parts: the solution of the kinetic equation is mod-
eled using a large number N of “large” particles with the
same charge-to-mass ratio; the solution to the field part
of the problem is often carried out using the Yee algo-
rithm [Yee, 1966; Taflove and Hagness, 2005]. In turn,
this paper devoted to a detailed examination of the field
part of this problem and to the analysis of the arising
computational errors.

2 Boundary Approximation Methods

One of the most important issues when using the finite
difference time domain method (FDTD) is the approx-
imation of curved boundaries on a computational grid.
Here, the simplest way is the so-called staircase approx-
imation of the boundary (fig. 1a). In particular, the fig.
la represents an approximation of the boundary between
a perfect electric conductor (PEC) and a vacuum. In this
representation, the curved border is replaced by its stair-
case counterpart, so that each grid cell is uniformly filled
with only one type of material. In this case, the nodes of
the computational grid located inside the PEC, as well
as the nodes corresponding to the tangential components
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Figure 1. Representation of the computational grid for the (@) stair-

case and (b) Dey-Mittra approximation.

of the electric field strength in the approximated geome-
try, are not calculated, since they are equal to zero due to
boundary conditions and the absence of the field inside
the PEC.

Such approximation of the boundary is well suited for
simulation systems with rectangular geometry but, at the
same time, despite its simplicity, it allows simulation of
the systems with curvilinear geometry with good accu-
racy.

Currently, several approaches to the approximation of
curvilinear geometry have been developed, which can
be classified into two groups. These are methods re-
quiring the nonorthogonal coordinates or totally unstruc-
tured grids, and methods that deform the Cartesian com-
putational grid only locally to take into account surface
curvature [Palandech et al., 1992; Gedney and Roden,
2000; Taflove and Hagness, 2005; Railton and Schnei-
der, 1999].

It should be noted that the use of a global nonorthog-
onal grid leads to great difficulties when using the PIC
method. Because of this feature, methods involving only
a locally deformed mesh are more preferable in the con-
text of the problem under consideration and often have a
simpler implementation and high accuracy.

The group of methods that locally deform the mesh
includes method called ”Contour path finite-difference

time-domain” (CPFDTD) [Jurgens and Taflove, 1993].
The essence of this method is to change the contour of
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the cell that the PEC crosses so that the distorted contour
exactly corresponds to the free space of this cell (cells
(1,2), (2,3), (3,4) in fig. 1b). This approach allows
taking into account the curvature of the surface crossing
the cell during integration. This method approximates
geometry with high accuracy but can be unstable due to
the need to borrow the nearest components of the electric
field. It should be noted that there is the modernization
of this method making it stable but increasing computa-
tional complexity [Railton and Craddock, 1996].

At the same time, S. Dey and R. Mittra proposed the
method characterized by high accuracy, and stability,
and an insignificant increase in computational complex-
ity relative to the staircase approximation of the bound-
ary [Dey and Mittra, 1997]. The essence of this method
is to include in the calculation of cells, the free space of
which is more than 1.5% of the area of the undistorted
cell, and the ratio between the largest side of the distorted
cell (for the cell (4, 5) in fig. 1bitis maz(l,,1,)) and its
area was less than 10. This leads to the calculation of the
grid nodes for the magnetic field that is inside a conduc-
tor (for example, cells (1,3), (2,4), (4,5) in fig. 1b). It
should be noted that this approach requires a decrease in
the time step in order to maintain stability. In particular,
for the parameters 1.5 % and 10, the time step should be
two times less than the step determined by the Courant
number [Dey and Mittra, 1997].

In this paper the results on approximating the bound-
ary between two materials are presented. The influence
of changes in the geometric shape of the resonator on
the frequency and error obtained in the numerical exper-
iment is analyzed.

3 Results

As a test problem, the frequency of a cylindrical res-
onator was investigated as a function of its radius. At
the initial time moment, the distribution of the electric
mode F117 was set in space; then frequency of electro-
magnetic field oscillations was measured by the Fourier
spectrum. In this paper, the space step was uniform and
equal to A = 1, mm, the time step was chosen equal to
At = Ekgtavie * AMtcourant, Where kgiapie = 0.25. The
cavity radius was changed with the step of 0.1 mm in the
range from 7 to 22 mm fig. 2b shows the dependence of
the resonance frequency on the radius of the system un-
der study. Here and below, the red line corresponds to the
staircase approximation, the green line is the approxima-
tion using the method proposed by S. Dey and R. Mittra,
and the black is the theoretically calculated frequency. It
is clearly seen that each of the methods determines the
resonant frequency well.

Consider an enlarged fragment of this dependence,
which is shown in fig. 2a. It can be seen that for the stair-
case approximation, the frequency change with increas-
ing radius occurs sharply and around the theoretically
calculated value. The frequency determined using the
Dey-Mittra method is characterized by a smooth change
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Figure 2. Comparison of the dependence of frequency on the radius

for the staircase and Dey-Mittra approximation (b); enlarged fragment

(a); computational error (C).

with increasing radius. At the same time, the curve ob-
tained using this method is always below the theoreti-
cal curve. This fact is understandable from a physical
point of view. Indeed, since this method involves the use
of grid points lying inside the conductor, that leads to a
phantom increase in the geometric size of the cavity on
the computational grid and, as a result, to a decrease in
the resonance frequency.

Fig. 2c illustrates the dependence of the frequency
measurement error on the cavity radius for the two con-
sidered methods. It can be seen that for both methods,

the computational error decreases with an increase in the
cavity radius. Such dynamic is associated both with the
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increase in the number of cells per wavelength and with
the decrease in the curvature of the approximated sur-
face.

Note, that for the analysis of a microwave device, it is
often important to investigate the effect of small changes
in geometric parameters on the electrodynamic charac-
teristics of the system. In this regard, we turn to a de-
tailed analysis of the dynamics of the error in determin-
ing the frequency in order to study the possibility of re-
liable detection of small changes using the methods con-
sidered.

To do this, it is required to approximate the curves
(f(R)), obtained in the numerical experiment by a power
polynomial (in this paper, the polynomial of degree 10
fapp(R)) was built by the least-squares method). Then it
is necessary to subtract their power approximation from
the experimental curves:

f(R) = f(R) - fapp(R) (D

The £(R) curves obtained in this way reflect deviations
of the measured frequency on the radius for each of the
methods (see fig. 3a). It is clearly seen that the devi-
ations obtained using the Dey-Mittra method are much
smaller than the deviations for the staircase approxima-
tion. At the same time, for the staircase approximation,
the fast decrease in £(R) is observed with increasing
radius and, accordingly, the number of cells per wave-
length.

To analyze the dynamics of £(R), a standard devi-
ation o(R) was constructed in the window of width
0R,, = 4A for the distribution of £(R) (see fig. 3b).
Here, the standard deviation is given on a logarithmic
scale in view of the different scales of the studied quan-
tities. It is clearly seen that o5(R) and o4(R) decrease
monotonically with increasing R. At the same time,
os(R) exceeds g4(R) by more than an order of magni-
tude for small R and approaches o4(R) with increasing
R.

4 Conclusion

In this paper, we considered the dynamics of the com-
putational error in determining the frequency of a cylin-
drical resonator. The detailed comparison of the error
dynamics for two methods of approximating the bound-
aries (staircase and Dey-Mittra approximation) for the
FDTD method was carried out. It is shown that the er-
ror in determining the resonator frequency does not ex-
ceed 1.5% for the staircase approximation, and 0.8% —
for the Dey-Mittra method. Moreover, for both methods,
the error decreases with an increasing radius. It is shown
that using the Dey-Mittra method, it is possible to detect
frequency changes by an order of magnitude more ac-
curate than when using the staircase approximation due
to smaller noise fluctuations of the frequency determina-
tion (fig. 3). At the same time, it should be noted that
the maximum errors for the methods under consideration
differ only by half.
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Figure 3. Distributions of the deviations of the measured frequency

on the radius for the staircase and Dey-Mittra approximation (&) and
the dependencies of the standard deviation on the radius for these dis-
tributions (b).
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