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Abstract
The aim of this article is to present the application of

a useful technique that allows to design a nonlinear ob-
server capable to estimate an unknown dynamics in the
system under analysis. In order to have a practical ex-
ample, the controller design for a quarter-car suspen-
sion system under road perturbations is presented. The
lack of exactitude for system parameters values and the
necessity to identify the variables measurement makes
this system ideal to apply the observer-identifier.
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1 Introduction
Nowadays exists a great number of mechanical sys-

tems that allow to make different kinds of tasks in order
to improve the human comfort. However, the math-
ematical models developed for this systems are ideal
and some dynamics and parameter values are not con-
templated when the control signal is designed. Even
the systems are usually perturbed for unknown exter-
nal signals, causing an undesired behavior. On the
other hand, the automotive industry has as main goal
to improve the driving experience and the passengers
safety due to the damage on roads that causes many
changes in the ideal conditions for which the cars were
designed. The new designs for suspension systems are
mainly based on maintaining the car body in horizon-

tal position without allowing rotations about the mass
center even under the effects of the road.
The full suspension system is composed by the front

mechanism and rear mechanism, each one with a
left subsystem and a right subsystem, usually called
quarter-car suspension system. A suspension subsys-
tem should be able to compensate the perturbations in-
duced by road conditions and due to the forces pro-
duced by the interaction with the other suspension sub-
systems, in other words, compensate the dynamics in-
duced by the full-car suspension system.
The proposed linear mathematical model in the lit-

erature for the quarter-car suspension system repre-
sents passive, semi-active or active behavior for typical
car suspensions. This model represents the dynamics
of tire and car body using springs, dampers, masses
and an actuator located between the car body and the
wheel. This actuator, allows to modify the damping
rates (semi-active) or the force applied to car body (ac-
tive) according to the control objective and the kind of
controller used.
Some of the control design approach includes adaptive

control [Nugrohoet al., 2012], fuzzy control [Ranjbar-
Sahraie, Soltani, and Roopaie, 2011], optimal control
[Paschedag, Giua, and Seatzu, 2010], sliding mode
control [Alvarez-Sanchez, 2013; Ahmed and Taparia,
2013] and skyhook control [Chen, 2009]. However, the
requirement of knowledge the parameters values make
almost impossible the implementation of the controller
designed without a parameter identification [Zarring-
halamet al., 2012], even a robust one.
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The control scheme presented here is a traditional
space state control design using a novel technique pro-
posed by [Rosas, Alvarez, and Fridman, 2007] that
avoid the necessity of knowing all the parameters sys-
tem values and the full state vector, resulting in a robust
and a feasible control law. The numerical values used
for simulations, correspond to a real car system param-
eter values.

2 Nonlinear Observer-Identifier
Consider the next second order system

ẋ1 = x2 (1)

ẋ2 = −ax1 − bx2 + ξ(·) − csign(x1)

wherea, b andc are positive constants andξ(·) is a up-
per bounded perturbation, i.e.|ξ(·)| ≤ ρ, with ρ being a
constant. According to [Rosas, Alvarez, and Fridman,
2007] the system (1) has an origin that is an exponen-
tially stable equilibrium in the sense of Lyapunov.
Now, consider a system in a state variable form as fol-

lows

ż1 = z2 (2)

ż2 = f(z) + gτ + γ(t)

whereg is a constant,f(z) is a Lipschitz function,
γ(t) is an external perturbation andτ is the control sig-
nal, the main assumption is thatγ(t) and τ are both
bounded such that (2) behavior is also bounded. A non-
linear observer-estimator for (2) is given by

˙̂z1 = c1(z1 − ẑ1) + w1

ẇ1 = c2(z1 − ẑ1) + c3sign(z1 − ẑ1)
˙̂z2 = c4(w1 − ẑ2) + w2 + f(z) + gτ (3)

ẇ2 = c5(w1 − ẑ2) + c6sign(w1 − ẑ2)

wherec1, c2, c3, c4, c5 andc6 are positive constants
such that they assure an exponentially stable origin.
Defining two error variables ase1 = z1− ẑ1 ande2 =
ż1 − ˙̂z1, the first error system dynamics is obtained as

ė1 = e2

ė2 = ξ1(·)− c1e2 − c2e1 − c3sign(e1) (4)

where

ξ1(·) = f(z) + gτ + γ(t).

The system (4) has the form of (1), so the origin of (4) is
an exponential stable equilibrium point. Furthermore,
e1 → 0 implies thatẑ1 → z1 andw1 → z2.

The error variablese3 = z2 − ẑ2 ande4 = ż2 − ˙̂z2,
produces a second error dynamics system given by

ė3 = e4

ė4 = ξ2(·)− c4e4 − c5e3 − c6sign(e3) (5)

where

ξ2(·) = γ̇(t).

The system (5) also has the form of (1) so thatẑ2 → z2
andw2 → γ(t). The convergence of termw2 implies
that the external perturbation is identified, which is an
advantage of this methodology at the moment of con-
trol design. A more detailed explanation for the anal-
ysis of convergences is found in [Rosas, Alvarez, and
Fridman, 2007] and [Rosas and Alvarez, 2011].
In order to show the feasibility of the methodology

proposed by [Rosas, Alvarez, and Fridman, 2007], a
quarter-car suspension system model is ideal to design
a controller that uses the nonlinear observer-identifier.

3 Quarter-Car Suspension Dynamics

Figure 1. Quarter-Car Suspension System

The figure 1 shows the representation for a quarter-
car suspension system that is used to obtain a mathe-
matical model for the system dynamics. This model
allows to design a controller capable to fulfill the con-
trol objective: passengers comfort. The subscripts is
for the sprung elements, the subscriptu represents the
unsprung subsystem while the subscriptt refers to tire.

3.1 Mathematical Model
According to Newton methodology, the equations that

describe the system dynamics are

msz̈s = −bs(żs − żu)− ks(zs − zu) + fa (6)

muz̈u = bs(żs − żu) + ks(zs − zu)− fa

+bt(żr − żu) + kt(zr − zu) (7)

wherems andmu denotes the mass of the sprung and
unsprung elements, respectively. Whilebs, bt, ks and



CYBERNETICS AND PHYSICS, VOL. 2, NO. 4, 2013 195

kt are the damping rate and stiffness of the car body
(sprung mass) and tire, respectively. The linear actuator
is represented by means offa and the termzr denotes
the road perturbations.

3.2 State Space System
Usingz1 = zs, z2 = żs, z3 = zu, z4 = żu, (6) and

(7) can be rewritten in the next state space form

ż1 = z2

ż2 =
1

ms

[−bs(z2 − z4)− ks(z1 − z3) + fa]

ż3 = z4 (8)

ż4 =
1

mu

[bs(z2 − z4) + ks(z1 − z3)− fa

+bt(żr − z4) + kt(zr − z3)]

The first two expressions of (8) describe the car body
dynamics, which is the variable of interest to control.
Using the second equation of (8), a new equation in the
form of a perturbed one can be expressed as

ż2 +
bs

ms

z2 +
ks

ms

z1 =
1

ms

(bsz4 + ksz3 + fa) (9)

This last equation can be used to design the controller
that fulfills the comfort objective.

4 Controller-Estimator Design
In order to fulfill the control objective,z1 → zd. The

desired value for the sprung mass,zd, is given by

zd = Asin(ωt)

whereω is the frequency required for comfort pur-
poses. This frequency needs to be selected according
to [Guglielminoet al., 2008] in the range of 0.75 Hz
and 4 Hz in order to avoid nausea, vertigo, fatigue and
even column damage. Using (9) is easy to design the
next controller that cancels the undesired dynamics and
impose a new one

fa = −(bsz4 + ksz3) + bsz2 + ksz1 (10)

+ms [−kd(z2 − z2d)− kp(z1 − z1d)− ż2d]

wherekd andkp are positive constants. Substituting
(10) in (9), the closed loop system is obtained, in func-
tion of z1, as

(z̈1 − z̈1d) + kd(ż1 − ż1d) + kp(z1 − z1d) = 0.(11)

However, the controller (10) needs to know the dy-
namics of the unsprung mass and all the parameters of
the entire system, which is the disadvantage of this kind
of control design.

4.1 Estimator Design
The subsystem composed by the first two equations of

(8) can be rewritten as

ż1 = z2 (12)

ż2 = Φ(·) +
1

ms

fa

where

Φ(·) =
1

ms

[−bs(z2 − z4)− ks(z1 − z3)]

represents the dynamics to be estimated. Using (3), an
observer-estimator for (12) is given by

˙̂z1 = c1(z1 − ẑ1) + w1

ẇ1 = c2(z1 − ẑ1) + c3sign(z1 − ẑ1)

˙̂z2 = c4(w1 − ẑ2) + w2 +
1

ms

fa (13)

ẇ2 = c5(w1 − ẑ2) + c6sign(w1 − ẑ2).

The convergence for the variables is obtained by means
of (13) as

ẑ1 → z1

w1 → z2 (14)

ẑ2 → z2

w2 → Φ(·).

Using (14) the controller (10) can be rewritten as

fa = ms(−w2 − kde2 − kpe1 − z̈1) (15)

where

e1 = z1 − z1d

e2 = z2 − ż1d.

Substituting the controller (15) in (12) the closed loop
system obtained is

ë1 + kdė1 + kpe1 = 0 (16)

which is a stable equation that converges to zero ac-
cording the values ofkd andkp.
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Table 1. Quarter-car Honda Civic 2005 parameters

Parameter Value Units

Sprung mass(ms) 315 kg

Unsprung mass(mu) 51 Kg

Spring stiffness(ks) 43.3 KN/m

Damping constant(bs) 3.9 KN·s/m

Tire stiffness(kt) 210 KN/m

Tire damping(bt) 1.1 KN·s/m

Distance floor to tire center 0.311 m

Distance floor to car body

center of mass 0.518 m

5 Simulation Results
The system parameters used for simulations corre-

spond approximately to the real values for a quarter-car
Honda Civic 2005. These values are listened in table 1.
The Observer-Estimator and the control parameters

are shown in table 2.

Table 2. Observer-Estimator and Control Parameters

Parameter Value

c1, c2, c3 5.5, 1.2, 0.1

c4, c5, c6 150, 150, 1055

kd, kp 110, 22

The simulations results were obtained by means of
SIMNON R© with a fixed integration step of 1 ms. The
road perturbation profile is shown in figure 2. One can
notice three different amplitudes and frequencies acting
directly over the tire. The first two signals represents a
bumpy road, with 5 cm and 10 cm of deep, and the last
signal is a speed reducer of 10 cm of high.
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Figure 2. Road perturbations

From real comfort purposes, the desired behavior for
body car (sprung mass) is

zd = 0.1sin(0.5t)

Theω = 0.5 represents a frequency ofπ Hz, which is
between the recommended values. The free displace-
ment (segmented line) versus the controlled displace-
ment (continuous line) is shown in figure 3, where the
values are displaced the distance from the floor to the
car body center of mass.
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Figure 3. Sprung mass: controlled vs free

The force required to control the sprung mass and
avoid the road perturbations is shown in figure 4.
Where the effect of the observer-estimator is clear due
the high frequency oscillations in the control signal.
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Figure 4. Force control

Figure 5 shows the comparison between the dynam-
ics Φ(·) and its estimationω2. The continuous line
represents the real dynamics meanwhile the segmented
line the estimated one. Due that the estimated signal is
around the real signal, the zoom shown in figure 6 is
necessary.
The tracking error for the sprung mass is shown in

figure 7, where one can notice that is in order of mil-
limeters.
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Figure 5. DynamicsΦ(·) real vs estimatedω2
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Figure 6. Zomm of signalsΦ(·) andω2
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Figure 7. Sprung mass: tracking error

The behavior of the sprung mass (car body) and un-
sprung mass (tire) induced by the road profile are
shown in figure 8, where the distance among the sig-
nals represents a real separation for the tire center to
the road and the body car mass center to the road.

6 Conclusion
The methodology presented in this paper allows to

have a useful estimator that could be implemented in
a testing car in order to demonstrate the effectiveness
of the designed controller, this because it is not nec-
essary to know the parameters of the quarter-car, the
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Figure 8. Displacement comparison: Road profile, tire and car

body

road profile neither the tire dynamics. Even when the
observer-estimator is nonlinear due the use of the sign
function, the high frequencies are not induced to the
car body and the control aim, passengers comfort, is
fulfilled. The results obtained motivate to continue to
the next step, the control of a half-car.
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