
CYBERNETICS AND PHYSICS, VOL. 1, NO. 4, 2012 , 274–278

A SIMPLE PHYSICS-MOTIVATED EQUIVALENT
REFORMULATION OF P=NP THAT MAKES THIS

EQUALITY (SLIGHTLY) MORE PLAUSIBLE

Jaime Nava and Vladik Kreinovich
Department of Computer Science

University of Texas at El Paso
El Paso, TX 79968, USA

contact email vladik@utep.edu

Abstract
In our opinion, one of the reasons why the problem

P ?
=NP is so difficult is that while there are good in-

tuitive arguments in favor of P̸=NP, there is a lack
of intuitive arguments in favor of P=NP. In this pa-
per, we provide such an argument — based on the fact
that in physics, many dependencies are scale-invariant,
their expression does not change if we simply change
the unit in which we measure the corresponding input
quantity (e. g., replace meters by centimeters). It is rea-
sonable to imagine similar behavior for time complex-
ity tA(n) of algorithms A: that the form of this depen-
dence does not change if we change the unit in which
we measure the input length (e. g., from bits to bytes).
One can then easily prove that the existence of such
scale-invariant algorithms for solving, e. g., proposi-
tional satisfiability is equivalent to P=NP. This equiva-
lent reformulation of the formula P=NP is, in our opin-
ion, much more intuitively reasonable than the original
formulation — at least to those who are familiar with
the importance of scale-invariance in physics.
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1 P ?
=NP Problem: A Brief Reminder

1.1 Some Algorithms Are Feasible, Some Are Not:
On the Example of Propositional Satisfiability

Until the 1960s, the main emphasis in computer sci-
ence was on deciding which problems are algorithmi-
cally solvable and which problems are not. Some of
the resulting algorithms turned to be feasible and prac-
tically useful, other algorithms required too many com-
putational steps to be implemented on the existing com-
puters — but since the computers became faster and
faster, there was a hope that these algorithms would
become feasible in a few decades.

In the last 1960s, it became clear that some algorithms
are not feasible — because even for reasonable size
data, these algorithms require computation time which
exceeds the lifetime of the Universe. Probably the most
well-known example of such an algorithm is an exhaus-
tive search approach to solving the propositional satis-
fiability problem (SAT). Let us briefly recall this prob-
lem and the corresponding algorithm.
The propositional satisfiability problem is related to

the fact that programs are ubiquitous, they control
many important aspects of our lives: program control
planes in flight, programs control nuclear power plants,
programs control medical devices supporting live. To
avoid disasters, it is very important to make sure that
these programs work correctly. Ideally, it is desirable to
prove the program correctness, but for many complex
programs, such a proof is still not possible. In such sit-
uations, to make sure that the program works correctly,
we need at least to test it on different inputs. In partic-
ular, if a program involves branching, i. e., if it follows
different paths depending on some condition, then we
need to make that all the branches work correctly.
We can have simple conditions: e.g., relations like
a = b or a < b, or the value of some propositional
(Boolean) variable v, i. e., a variable which can take
only values “true” or “false”. We can also combine
different simple conditions by using propositional con-
nectives “and” (&), “or” (∨), and “not” (¬). So, in gen-
eral, a condition can be described as a propositional
formula, i. e., an expression obtained from proposi-
tional variables v1, v2, . . . by using &, ∨, and ¬. For
example, we can have a formula

(v1 ∨ v2 ∨ ¬v3)& (¬v1 ∨ ¬v2).

To design a test case in which this condition is satis-
fied, we need to be able, given a propositional formula,
find values of the variables vi which make this formula



CYBERNETICS AND PHYSICS, VOL. 1, NO. 4, 2012 275

true. This problem is called propositional satisfiability
problem.
For each formula with n variables, each of these vari-

ables vi has exactly two possible values (“true” and
“false”), so there are 2n possible combinations of truth
values (v1, v2, . . .). In principle, we can thus algorith-
mically solve the propositional satisfiability problem
by testing all 2n possible combinations. The problem
with this approach is that already for a reasonable size
inputs n ≈ 300, we need 2n ≈ 10100 computational
steps — while if we divide the lifetime of the Universe
(≈ 1010 years) by the smallest possible time (during
which light passes through an elementary particle), we
will get only ≈ 1040 moments of time. This exhaustive
search algorithm is clearly not feasible.

1.2 Feasible vs. Non-Feasible Algorithms: To-
wards a Formal Definition

How can we formally separate feasible and non-
feasible algorithms? In most cases, algorithms A
whose computation time tA(n) is bounded by a poly-
nomial P (n) of the (bit) length n of the input are fea-
sible, while algorithms whose computation time grows
faster than any polynomial are not feasible. As a re-
sult, in theoretical computer science, an algorithm A is
called feasible if its computation time is bounded from
above by some polynomial.
This definition is not perfect: e.g., computation time
tA(n) = 10100·n is polynomial but clearly not feasible,
while the computation time exp(10−6 · n) is clearly
not polynomial but feasible for all reasonable lengths
n. However, this is the best available definition of a
feasible algorithm; see, e. g., [Kreinovich et al., 1998;
Papadimitriou, 1994].

1.3 From Abstract Computational Devices to
Real-Life Computers

In theoretical computer science, computation time is
usually defined as the number of elementary computa-
tion steps on an abstract computational device — such
as Turing machine (a favorite of theoreticians), Ran-
dom Access Machine (RAM, a model which is closer
to real physical computers), or Kolmogorov-Uspensky
machine (which also has robotic abilities). The num-
ber of steps often depends on what computation model
is used: for example, for most algorithms, the number
of steps on a RAM (where we can access each memory
cell in a single step) is much smaller than on a Turing
machine (where we have to pass through each interme-
diate memory cell).
It turns out, however, that while the computation

time changes, polynomial time remains polynomial,
and non-polynomial time remains non-polynomial. In
other words, whether an algorithm is feasible or not (in
the above formal sense) does not depend on the specific
computational device: we can use simple Turing ma-
chines, we can use sophisticated computers, the class
of feasible algorithms remains the same.

1.4 What Is a “Problem”?
A natural next question is: which problems can be

solved by feasible algorithms? To formalize this ques-
tion, we need to formalize what is a problem.
For example, in mathematics, a typical problem is:

given a statement x, find a proof y of either this state-
ment or of its negation ¬x. Once a candidate proof is
given in all the formal details, checking whether y is
indeed a proof is easy: it is sufficient to check, step
by step, whether all derivations are legitimate. Com-
puter algorithms for checking the corresponding prop-
erty C(x, y) (that y is a formal proof of x) were known
already in the 1960s. However, as every mathematician
knows, coming us with such a proof y is often not easy.
An additional requirement is that the proof should

be of reasonable length, so that it will be possible to
check its correctness. Similarly to computation time, a
reasonable formalization of “reasonable length” is the
length len(y) which is bounded by a polynomial Pl of
the length of the input: len(y) ≤ Pl(len(x)). In these
terms, a typical problem of mathematics take the fol-
lowing form:

• we have a feasible algorithm C(x, y) and a poly-
nomial Pl(n);

• given a sequence of symbols x, we must find a se-
quence y for which C(x, y) is true and for which
len(y) ≤ Pl(len(x)).

In physics, given data x, we need to find formulas y
that explain all this data. For example, we have pairs
(I, V ) consisting of current I and voltage V , and we
would like to recover Ohm’s law. Once a formula y is
given, checking whether this formula is indeed consis-
tent with all the observations is feasible: we just check
that each of the observations is consistent with this for-
mula. In other words, the property C(x, y) — that the
formula y indeed explains all the observations — is fea-
sible. What is often not easy is coming up with a simple
formula that would explain all the observations.
The length of the desired formula y cannot exceed the

length of the inputs, since otherwise, we can simply list
all observations x and call it an explanation. Thus, we
must have len(y) < len(x), i. e., len(y) ≤ Pl(len(x))
for the simple polynomial Pl(n) = n. So, we also have
the problem of the above type.
In engineering, given specifications x (e. g., specifica-

tions for a bridge), we must find a design y — a col-
lection of symbols and pictures — that satisfies these
specifications, e. g., that enables the bridge to withstand
given winds, given loads, and be within the given bud-
get. Here also, once a design y is given, known feasible
algorithms can usually check whether the design meets
the specifications, but coming up with such a design
is often not easy. In this example, the length of the
(computer representation of the) design should also be
reasonable, otherwise we will not be able to implement
this design. So, if we interpret “reasonable length” as
bounded by a polynomial Pl(len(x)), we also end up
with the problem of the above type.
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In general, in many application areas, we have prob-
lems for which, once we have a candidate for a solu-
tion, it is feasible to check whether this candidate is
indeed a solution – but coming up with a solution may
not be easy. All these problems have the above type:

• we have a feasible algorithm C(x, y) and a poly-
nomial Pl(n);

• given a sequence of symbols x, we must find a se-
quence y for which C(x, y) is true and for which
len(y) ≤ Pl(len(x)).

The class of all such problems is known as the class NP
[Kreinovich et al., 1998; Papadimitriou, 1994].

1.5 P ?
=NP

For some problems from the class NP, there exist
known feasible algorithms that solve all instances of
this problem, i.e., algorithms that, given x, generate y
for which C(x, y) is true and len(y) ≤ Pl(len(x)) (or
return a message that such y is impossible). The class
of all such feasibly solvable problem is denoted by P
(for Polynomial time). A natural question is: are all
problems from the class NP feasibly solvable? In other
words, is the class NP equal to P?
If NP is equal to P, then in mathematics, we would

have a feasible algorithm that, given a formula x, gen-
erates a proof of either this formula or its negation (or a
message that such a proof is impossible). In physics,
we would have a feasible algorithm that, given data
x, generates a simple formula that explains this data.
In engineering, we would have a feasible algorithm
that, given bridge specifications (wind, load, cost, etc.),
would generate a design for this bridge – or a message
that such a design is not possible within given con-
straints.
This may sound impossible at first glance, but there

exist non-trivial examples of polynomial-time algo-
rithms that solve complex problems for which such al-
gorithms were originally thought to be impossible. For
example, there is a polynomial-time algorithm for solv-
ing linear programming problems, i. e., for checking

whether a given system of linear inequalities
n∑

j=1

aij ·

xi ≥ bi, i = 1, . . . ,m, is consistent (see, e. g., [Pa-
padimitriou, 1994] and references therein).

1.6 NP-Hard Problems (Including Satisfiability)
While it is still not known whether NP is equal to P,

what is known is that some problems from the class NP
are provably hardest, in the sense that the solution to
any other problem from this class can be reduced, in
polynomial time, to the solution of this problem.
Historically the first of such NP-hard problems is

the above-described propositional satisfiability prob-
lem (SAT): if we can solve this problem is polynomial
time, then we can solve any problem from the class NP
in polynomial time (i. e., then P=NP). So, the problem
P ?
=NP is equivalent to the problem of whether we can

solve SAT (or any other NP-hard problem) in polyno-
mial time.

2 Need For a Better Intuitive Understanding of the
P=NP Option

In history of mathematics, solutions to many long-
standing problems came when the consequences of the
corresponding statements being true or false became
clearer. For example, mathematicians have tried, for
many centuries, to deduce the V-th Postulate — that
for every point P outside a line ℓ, there is no more
than one line ℓ′ going through P and parallel to ℓ —
from other postulates of geometry. The independence
proof appeared only after the results of Gauss, Bolyai,
and Lobachevsky made geometry without this postu-
late more intuitively clear; see, e. g., [Bonola, 2010].
For this viewpoint, maybe one of the difficulties in

solving the P ?
=NP problem is that while there are good

intuitive arguments in favor of P̸=NP, there is a defi-
nite lack of intuitively convincing arguments in favor
of P=NP.

3 Example of Intuitive Arguments in Favor of
P ̸=NP

Example of arguments in favor of P̸=NP are numer-
ous, many of them boil down to the following: if P=NP,
we will have feasible algorithms for solving classes
of problems which are now considered highly creative
— and for which, therefore, such algorithms are intu-
itively unlikely.
As we have mentioned earlier, one example of a

highly creative activity area is mathematics, where one
of main objectives is, given a statement S, to prove ei-
ther this statement or its negation ¬S. We are usually
interested in proofs which can be checked by human
researchers, and are, thus, of reasonable size. In the
usual formal systems of mathematics, the correctness
of a formal proof can be checked in polynomial time.
So, the problem of finding a reasonable-size proof of
a given statement S (or of its negation) belongs to the
class NP. If P was equal to NP, then we would be able
to have a polynomial-time algorithm for proving theo-
rems — a conclusion which most mathematicians con-
sider unlikely.
Similarly, in theoretical physics, one of the main chal-

lenged is to find formulas that describe the observed
data. The size of such a formula cannot exceed the
amount of data, so the size is feasible. Once a formula
is proposed, checking whether all the data is consistent
with this formula is easy; thus, the problem of search-
ing for such a formula is in the class NP. So, if P was
equal to NP, we would have a feasible algorithm for the
activity which is now considered one of the most cre-
ative ones – judged, e.g., by the fact that Nobel Prizes
in Physics get a lot of publicity and bring a lot of pres-
tige.
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4 What We Do in This Paper
In this paper, we propose a physics-motivated argu-

ment in favor P=NP.

5 Physical Motivations: The Idea of Scale Invari-
ance

The value of a physical quantity can be measured by
using different units. For example, length can be mea-
sured in meters, in centimeters, in inches, etc. When
we replace the original unit by a new unit which is λ
times larger, all numerical values x change, from x to
x′ =

x

λ
, so that x = λ·x′; this transformation is known

as re-scaling.
For many physical processes, there is no preferred

value of a physical quantity; see, e. g., [Feynman,
Leighton, and Sands 2005]. For such processes, it
is reasonable to require that the corresponding depen-
dence have the same form no matter what measuring
unit we use. For example, the dependence of the pen-
dulum’s period T on its length L has the form

T = f(L) = 2π ·

√
L

g
= c ·

√
L

for an appropriate constant c. If we change the unit of
length, so that L = λ ·L′, we get a similar dependence

T = f(λ · L′) = c ·
√
λ · L′ = c ·

√
λ ·

√
L′.

If we now accordingly re-scale time, to new units
which are

√
λ times larger, then we get the exact same

dependence in the new units T ′ = c ·
√
L′. Since we

get the same formula for all measuring unit, physicists
say that the pendulum formula is scale-invariant.
In general, a dependence y = f(x) is called scale-

invariant if each re-scaling of x can be compensated by
an appropriate re-scaling of y, i. e., if for every λ, there
is a value C(λ) for which f(λ · x) = C(λ) · f(x) for
all x and λ. For continuous functions, this functional
equation leads to the power law f(x) = c · xα; see,
e. g., [Aczel, 2006].
Scale-invariance is ubiquitous in physics: e. g., it

helps explain most fundamental equations of physics,
such as Einstein’s equations of General Relativ-
ity, Schrödinger’e equations of quantum mechanics,
Maxwell’s equations, etc. [Finkelstein, Kreinovich,
and Zapatrin, 1986]. It is also useful in explaining
many semi-empirical computer-related formulas; see,
e. g., [Nguyen and Kreinovich, 1997].

6 Maybe Some Algorithms Are Scale-Invariant
One of the main concepts underlying P and NP is the

concept of computational complexity tA(n) of an algo-
rithm A, which is defined as the largest running time of
this algorithm on all inputs of length ≤ n. Similar to

physics, in principle, we can use different units to mea-
sure the input length: we can use bits, bytes, Kilobytes,
Megabytes, etc. It is therefore reasonable to conjec-
ture that for some algorithms, the dependence tA(n) is
scale-invariant – i. e., that its form does not change if
we simply change a unit for measuring input length.
It should be mentioned that for discrete variables n,

scale-invariance cannot be defined in exactly the same
way, since the fractional length n/λ does not always
make sense. Thus, we require scale-invariance only
asymptotically, when n → ∞.

Definition.

• We say that functions f(n) and g(n) are asymptot-
ically equivalent (and denote it by f(n) ∼ g(n)) if
f(n)/g(n) → 1 when n → ∞.

• We say that a function f(n) from natural num-
bers to natural numbers is asymptotically scale-
invariant if for every integer k, there exists an inte-
ger C(k) for which f(k · n) ∼ C(k) · f(n).

• We say that an algorithm A is scale-invariant if its
computational complexity function tA(n) is scale-
invariant.

Now, we are ready to present the promised equiva-
lent reformulation of P=NP, a reformulation that — in
view of the ubiquity of scale invariance in physics —
provides some intuitive argument in favor of this equal-
ity.

Proposition. P=NP if and only if there exists a scale-
invariant algorithm for solving propositional satisfia-
bility SAT.

Proof. If P=NP, then there exists a polynomial-time
algorithm A for solving SAT, i. e., an algorithm for
which tA(n) ≤ C ·nα for some C and α. We can mod-
ify this algorithm as follows: first, we run A, then wait
until the moment C · nα. Thus modified algorithm A′

also solves SAT, and its running time tA′(n) = C · nα

is clearly scale-invariant.
Vice versa, let us assume that A is a scale-invariant

algorithm for solving SAT. For k = 2, this means that

for some number C(2), the ratio
tA(2n)

C(2) · tA(n)
tends to

1 as n → ∞. By definition of the limit, that there exists

an N such that for all n ≥ N , we have
tA(2n)

C(2) · tA(n)
≤

2, i. e.,

tA(2n) ≤ 2 · C(2) · tA(n).

By induction, for values n = 2k ·N , we can now prove
that

tA(2
k ·N) ≤ (2 · C(2))k · tA(N).
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For every n ≥ N , the smallest k for which 2k ·N ̸= n
can be found as

k = ⌈log2(n/N)⌉ ≤ log2(n/N) + 1.

By definition, the function tA(n) is non-decreasing,
hence tA(n) ≤ tA(2

k ·N) and thus,

tA(n) ≤ (2 · C(2))k · tA(N).

Due to the above inequality for k, we get

tA(n) ≤ (2 · C(2))log2(n/N)+1 · tA(N) =

(2 · C(2))log2(n/N) · 2 · C(2) · f(N).

Here,

(2 · C(2))log2(n/N) =
(
2log2(2·C(2))

)log2(n/N)

=

2log2(2·C(2))·log2(n/N) =

(
2log2(n/N)

)log2(2·C(2))

=
( n

N

)α

,

where α
def
= log2(2 · C(2)), so

tA(n) ≤
( n

N

)α

· 2 · C(2) · f(N).

Thus, the SAT-solving algorithm A is indeed polyno-
mial time, and hence, P=NP. The proposition is proven.
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