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Abstract— State estimation is a major problem in mobile
robot localization. To this end gaussian and nonparametric
filters have been developed. In this paper the Extended Kalman
Filter which assumes gaussian measurement noise is compared
to the Particle Filter which does not make any assumption
on the measurement noise distribution. As a case study the
estimation of the state vector of a mobile robot is used, when
measurements are available from both odometric and sonar
sensors. It is shown that in this kind of sensor fusion problem
the Particle Filter stands has improved performance and has
wider applications than the Extended Kalman Filter, at the cost
of more demanding computations.

I. INTRODUCTION

State estimation (or filtering) is a research field of primary
importance for industrial systems operation. It is well known
that the optimal filter for linear model with Gaussian noise
is the Kalman Filter [1]. State estimation for nonlinear
systems with non-Gaussian noise is a difficult problem and in
general the optimal solution cannot be expressed in closed-
form. Suboptimal solutions use some form of approximation
such as model linearisation in the Extended Kalman Filter
(EKF) [2]. More recently, Monte Carlo sampling from state
vectors distribution has been used in the development of the
particle filter. A particular advantage of this sample-based
approximation is its suitability in applying it to the nonlinear
non-Gaussian case [3-6].
The Extended Kalman Filter (EKF) is an incremental estima-
tion algorithm that performs optimization in the least mean
squares sense and which has been successfully applied to
neural networks training and to data fusion problems [2,7].
In this paper the EKF has been employed for the localization
of an autonomous vehicle by fusing data coming from
different sensors. In the EKF approach the state vector is
approximated by a Gaussian random variable, which is then
propagated analytically through the first order linearization
of the nonlinear system. The series approximation in the EKF
algorithm can, however, lead to poor representations of the
nonlinear functions and of the associated probability distri-
butions. As a result, sometimes the filter will be divergent.
To overcome these shortcomings, a new kind of nonlinear
filtering method, the so-called Particle Filter (PF), has been
proposed [8]. Particle filtering has improved performance
over the established nonlinear filtering approaches (e.g. the
EKF), since it can provide optimal estimation in nonlinear
non-Gaussian state-space models ([9-11]), as well as esti-
mation of nonlinear models ([12-13]). Particle filters can
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estimate the system states sufficiently when the number of
particles (estimations of the state vectors which evolve in
parallel) is large. However the method has not yet become
popular in industry because implementation details are miss-
ing in literature, and because its computational complexity
has to be handled in real-time applications [14,15]. The
particle filtering algorithm reminds of the genetic algorithms
where a number of N particles is subject to a mutation
mechanism which corresponds to the prediction stage, and
to selection mechanism which corresponds to the correction
stage [16].
In this paper implementation and tuning issues of particle
filtering are discussed. The performance of the proposed
methodology is evaluated against EKF in the problem of
sensor fusion for the localization of an autonomous mobile
robot. The problem is to succeed an accurate estimation of
the state vector of the mobile robot fusing measurements
from odometric and sonar sensors. At a second stage the
estimated state vector is used by a nonlinear controller in-
order to make the mobile robot track a desired trajectory.
The structure of the paper is as follows: In Section II
Data Fusion with the use of Extended Kalman Filtering
is discussed. The Extended Kalman Filter (EKF) for the
Nonlinear state-measurement model is presented. In Section
III the Particle Filtering algorithm for state estimation of
nonlinear dynamical systems is introduced. Particle filtering
based on sequential importance resampling is analyzed. The
prediction and correction stages are explained. Issues for
improved resampling and substitution of the degenerated
particles are discussed. In Section IV simulation experiments
are carried out to evaluate the performance of the Extended
Kalman Filter and the Particle Filter in sensor fusion for
mobile-robot localization. Finally, in Section V concluding
remarks are stated.

II. DATA FUSION WITH THE USE OF EXTENDED KALMAN
FILTERING

A. EKF for the Nonlinear State-Measurement Model

The following nonlinear time-invariant state model is now
considered [2]:

x(k + 1) = φ(x(k)) + w(k)
z(k) = γ(x(k)) + v(k)

(1)

where w(k) and v(k) are uncorrelated, zero-mean, Gaussian
zero-mean noise processes with covariance matrices Q(k)
and R(k) respectively. The operators φ(x) and γ(x) are
given by, φ(x) = [φ1(x), φ2(x), · · · ,φm(x)]T , and γ(x) =



[γ1(x), γ2(x), · · · , γp(x)]T , respectively. It is assumed that φ
and γ are sufficiently smooth in x so that each one has a valid
series Taylor expansion. Following a linearization procedure,
φ is expanded into Taylor series about x̂:

φ(x(k)) = φ(x̂(k)) + Jφ(x̂(k))[x(k)− x̂(k)] (2)

where Jφ(x) is the Jacobian of φ calculated at x̂(k):
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(3)

Likewise, γ is expanded about x̂−(k)

γ(x(k)) = γ(x̂−(k)) + Jγ [x(k)− x̂−(k)] + · · · (4)

where x̂−(k) and x̂(k) were defined in sub-section ??. The
Jacobian Jγ(x) is
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(5)

The resulting expressions create first order approximations of
φ and γ. Thus the linearized version of the plant is obtained:

x(k + 1) = φ(x̂(k)) + Jφ(x̂(k))[x(k)− x̂(k)] + w(k)
z(k) = γ(x̂−(k)) + Jγ(x̂−(k))[x(k)− x̂−(k)] + v(k)

Now, the EKF recursion is as follows: First the time update
is considered: by x̂(k) the estimation of the state vector
at instant k is denoted. Given initial conditions x̂−(0) and
P−(0) the recursion proceeds as:

• Measurement update. Acquire z(k) and compute:

K(k) = P−(k)JT
γ (x̂−(k))·

·[Jγ(x̂−(k))P−(k)JT
γ (x̂−(k)) + R(k)]−1

x̂(k) = x̂−(k) + K(k)[z(k)− γ(x̂−(k))]
P (k) = P−(k)−K(k)Jγ(x̂−(k))P−(k)

(6)

• Time update. Compute:

P−(k + 1) = Jφ(x̂(k))P (k)JT
φ (x̂(k)) + Q(k)

x̂−(k + 1) = φ(x̂(k))
(7)

The schematic diagram of the EKF loop is given in Fig. 1.

Fig. 1. Schematic diagram of the EKF loop

III. PARTICLE FILTERING FOR THE NONLINEAR
STATE-MEASUREMENT MODEL

A. Particle Filter with sequential importance resampling

In the general case the equations of the optimal filter used for
the calculation of the state-vector of a nonlinear dynamical
system do not have an explicit solution. This happens for
instance when the process noise and the noise of the output
measurement do not follow a Gaussian distribution. In that
case approximation through Monte-Carlo methods can used.
As in the case of the Kalman Filter or the Extended Kalman
Filter the particles filter consists of the measurement update
(correction stage) and the time update (prediction stage) [17].

1) The prediction stage: The prediction stage calculates
p(x(k)|Z−) where Z− = {z(1), · · · , z(n− 1)}, using:

p(x(k − 1)|Z−) =
N∑

i=1

wi
k−1δξi

k−1
(x(k − 1)) (8)

while from Bayes formula it holds p(x(k)|Z−) =∫
p(x(k)|x(k − 1))p(x(k − 1)|Z−)dx. This finally gives

p(x(k)|Z−) =
∑N

i=1w
i
k−1δξi

k−
(x(k))

with ξi
k− ∼ p(x(k)|x(k − 1) = ξi

k−1)
(9)

The meaning of Eq. (9) is as follows: the state equation
of the nonlinear system of Eq. (1) is executed N times,
starting from the N previous values of the state vectors
x(k−1) = ξi

k−1 and using Eq. (1). This means that the value
of the state vector which is calculated in the prediction stage
is the result of the weighted averaging of the state vectors
which were calculated after running the state equation,
starting from the N previous values of the state vectors ξi

k−1.

2) The correction stage: The a-posteriori probability den-
sity was performed using Eq. (9). Now a new position
measurement z(k) is obtained and the objective is to cal-
culate the corrected probability density p(x(k)|Z), where
Z = {z(1), z(2), , z(k)}. From Bayes law it holds that
p(x(k)|Z) = p(Z|x(k))p(x(k))

p(Z) , which finally results into



p(x(k)|Z) =
∑N

i=1w
i
kδξi

k−
(x(k))

where wi
k =

wi
k−p(z(k)|x(k)=ξi

k− )∑N
j=1wj

k−p(z(k)|x(k)=ξj

k− )

(10)

Eq. (10) denotes the corrected value for the state vector. The
recursion of the Particle Filter proceeds in a way similar to
the update of the Kalman Filter or the Extended Kalman
Filter, i.e.:

Measurement update: Acquire z(k) and compute the new
value of the state vector

p(x(k)|Z) =
∑N

i=1w
i
kδξi

k−
(x(k))

with corrected weights wi
k =

wi
k−p(z(k)|x(k)=ξi

k− )∑N
j=1wi

k−p(z(k)|x(k)=ξk− )i

and ξi
k = ξi

k−
(11)

Resample for substitution of the degenerated particles.

Time update: compute state vector x(k + 1) according to

p(x(k + 1)|Z) =
∑N

i=1w
i
kδξi

k
(x(k))

where ξi
k∼p(x(k + 1)|x(k) = ξi

k)
(12)

The stages of state vector estimation with the use of the
particle filtering algorithm are depicted in Fig. 2.

Fig. 2. Schematic diagram of the Particle Filter loop

B. Resampling issues in particle filtering

The algorithm of particle filtering which is described through
Eq. (9) and Eq. (10) has a significant drawback: after a
certain number of iterations k, almost all the weights wi

k

become 0. To avoid this, resampling is performed which
substitutes the particles of low importance with those of
higher importance. The particles {ξ1

k, · · · , xN
k } are chosen

according to the probabilities {w1
k, · · · , wN

k }. The resam-
pling procedure of (ξi

k, wi
k i = 1, · · · , N ) is carried out

through previous sorting in decreasing order of the particle
weights. This will result into ws[1] > ws[2] > · · · > ws[N ]. A

random numbers generator is used and the resulting numbers
ui:N∼U [0, 1] fall in the partitions of the interval [0, 1]. The
width of these partitions is wi and thus a redistribution of
the particles is generated. For instance, in a wide partition of
width wj will be assigned more particles than to a narrow
partition of width wm (see Fig. 3).

Fig. 3. Multinomial resampling: (i) conventional resampling, (ii) resam-
pling with sorted weights

IV. SIMULATION RESULTS

A. EKF-based Sensor Fusion for Vehicle Localization

Sensor fusion algorithms can be classified into three different
groups: (i) fusion based on probabilistic models (e.g. Particle
Filtering), (ii) fusion based on least squares techniques (e.g.
Kalman Filtering), and (iii) intelligent fusion (e.g. fuzzy
logic) [18]. This paper is concerned with cases (i) and (ii).
The application of EKF to the fusion of data that come from
different sensors is examined first [19]. A unicycle robot is
considered. Its continuous-time kinematic equation is:

ẋ(t) = v(t)cos(θ(t)), ẏ(t) = v(t)sin(θ(t)), θ̇(t) = ω(t) (13)

which is a simplified model of a car-like robot studied
in [20]. Encoders are placed on the driving wheels and
provide a measure of the incremental angles over a sampling
period T . These odometric sensors are used to obtain an
estimation of the displacement and the angular velocity of the
vehicle v(t) and ω(t), respectively. These encoders introduce
incremental errors, which result in an erroneous estimation of
the orientation θ. To improve the accuracy of the vehicle’s
localization, measurements from sonars can be used. The
distance measure of sonar i from a neighboring surface
Pj is thus taken into account (see Fig. 4 and 5). Sonar
measurements may be affected by white Gaussian noise and
also by crosstalk interferences and multiples echoes.
The inertial coordinates system OXY is defined. Further-
more the coordinates system O′X ′Y ′ is considered (Fig. 4).
O′X ′Y ′ results from OXY if it is rotated by an angle θ
(Fig. 4). The coordinates of the center of the wheels axis with
respect to OXY are (x, y), while the coordinates of the sonar
i that is mounted on the vehicle, with respect to O′X ′Y ′ are
x
′
i, y

′
i. The orientation of the sonar with respect to OX ′Y ′ is

θ
′
i. Thus the coordinates of the sonar with respect to OXY

are (xi, yi) and its orientation is θi, and are given by:



Fig. 4. Mobile robot with odometric sensors

xi(k) = x(k) + x
′
isin(θ(k)) + y

′
icos(θ(k))

yi(k) = y(k)− x
′
icos(θ(k)) + y

′
isin(θ(k))

θi(k) = θ(k) + θi

(14)

Each plane P j in the robot’s environment can be represented
by P j

r and P j
n (Fig. 5), where (i) P j

r is the normal distance
of the plane from the origin O, (ii) P j

n is the angle between
the normal line to the plane and the x-direction.

Fig. 5. Orientation of the sonar i

The sonar i is at position xi(k), yi(k) with respect to the
inertial coordinates system OXY and its orientation is θi(k).
Using the above notation, the distance of the sonar i, from
the plane P j is represented by P j

r , P j
n (see Fig. 5):

dj
i (k) = P j

r − xi(k)cos(P j
n)− yi(k)sin(P j

n) (15)

where P j
n ε [θi(n)− δ/2, θi(n)+ δ/2], and δ is the width of

the sonar beam. Assuming a constant sampling period ∆tk =
T the measurement equation is z(k + 1) = γ(x(k)) + v(k),
where z(k) is the vector containing sonar and odometer mea-
sures and v(k) is a white noise sequence ∼ N(0, R(kT )).
The dimension pk of z(k) depends on the number of sonar
sensors. The measure vector z(k) can be decomposed in two
subvectors

z1(k + 1) = [x(k) + v1(k), y(k) + v2(k), θ(k) + v3(k)]

z2(k + 1) = [dj
1(k) + v4(k), · · · , dj

ns
(k) + v3+ns(k)]

(16)

with i = 1, 2, · · · , ns, where ns is the number of sonars,
dj

i (k) is the distance measure with respect to the plane P j

provided by the i-th sonar and j = 1, · · · , np where np is
the number of surfaces. By definition of the measurement
vector one has that the output function γ(x(k)) is given by
γ(x(k)) = [x(k), y(k), θ(k), d1

1(k), d2
2(k), · · · , d

np
ns ]T . The

robot state is [x(k), y(k), θ(k)]T and the control input is
denoted by U(k) = [u(k), ω(k)]T .
In the simulation tests, the number of sonar is
taken to be ns = 1, and the number of planes
np = 1, thus the measurement vector becomes
γ(x(k)) = [x(k), y(k), θ(k), d1

1]
T . To obtain the extended

Kalman Filter (EKF), the kinematic model of the vehicle is
linearized about the estimates x̂(k) and x̂−(k) the control
input U(k − 1) is applied.

The measurement update of the EKF is

K(k) = P−(k)JT
γ (x̂−(k))[Jγ(x̂−(k))P−(k)JT

γ (x̂−(k)) + R(k)]−1

x̂(k) = x̂−(k) + K(k)[z(k)− γ(x̂−(k))]
P (k) = P−(k)−K(k)JT

γ P−(k)

The time update of the EKF is

P−(k + 1) = Jφ(x̂(k))P (k)JT
φ (x̂(k)) + Q(k)

x̂−(k + 1) = φ(x̂(k)) + L(k)U(k)

where L(n) =




Tcos(θ(k)) 0
Tsin(θ(k)) 0

0 T




and Jφ(x̂(k)) =




1 0 −v(k)sin(θ)T
0 1 −v(k)cos(θ)T
0 0 1


,

while Q(k) = diag[σ2(k), σ2(k), σ2(k)], with σ2(k) chosen
to be 10−3 and φ(x̂(k)) = [x̂(k), ŷ(k), θ̂(k)]T , γ(x̂(k)) =

[, x̂(k), ŷ(k), θ̂(k), d(k)]T , i.e.

γ(x̂(k)) =




x̂(k)
ŷ(k)

θ̂(k)
P j

r − xi(k))cos(P j
n)− yi(k)sin(P j

n)


 (17)

Assuming one sonar ns = 1, and one plane P 1, np = 1
in the mobile robot’s neighborhood one gets JT

γ (x̂−(k)) =

[Jγ1(x̂
−(k)), Jγ2(x̂

−(k)),Jγ3(x̂
−(k)), Jγ4(x̂

−(k))]T , i.e.

JT
γ (x̂−(k)) =



1 0 0
0 1 0
0 0 1

−cos(P j
n) −sin(P j

n) {x′icos(θ − P j
n)− y

′
isin(θ − P j

n)}




(18)

The vehicle is steered by a dynamic feedback linearization
control algorithm which is based on PD control [21]:

u1 = ẍd + Kp1(xd − x) + Kd1(ẋd − ẋ)
u2 = ÿd + Kp2(yd − y) + Kd2(ẏd − ẏ)

ξ̇ = u1cos(θ) + u2sin(θ)

v = ξ, ω = u2cos(θ)−u1sin(θ)
ξ

(19)



The following initialization is assumed (see Fig. 6):
• vehicle’s initial position in OXY: x(0) = 0m, y(0) = 0m,

θ(0) = 45.0o.
• position of the sonar in O′X ′Y ′: x

′
1 = 0.5m, y

′
1 = 0.5m,

θ
′
1 = 0o.

• position of the plane P 1: P 1
r = 15.5m, P 1

n = 45o.
• state noise w(k) = 0, P̂ (0) = diag[0.1, 0.1, 0.1], and R =

diag[10−3, 10−3, 10−3, 10−3].
• Kalman Gain K(k) ε R3×4.
• desirable trajectory: starts at xd(0) = 0, yd(0) = 0, and

forms a 45o with the OX axis.

Fig. 6. Desirable trajectory of the autonomous vehicle i

The use of EKF for fusing the data that come from odometric
and sonar sensors provides an estimation of the state vector
[x(t), y(t), θ(t)] and enables the successful application of
nonlinear steering control of Eq. (19). The obtained resutls
are depicted in Fig. 7.

B. PF-based Sensor Fusion for Autonomous Vehicle Local-
ization

The particle filter can also provide solution to the sensor
fusion problem. The mobile robot model described in Eq.
(13), and the control law given in Eq. (19) are used again.
The number of particles was set to N = 1000.

The measurement update of the PF is p(x(k)|Z) =∑N
i=1w

i
kδξi

k−
(x(k)) with wi

k =
wi

k−p(z(k)|x(k)=ξi
k− )∑N

j=1wj
kp(z(k)|x(k)=ξj

k− )

where the measurement equation is given by
ẑ(k) = z(k) + v(k) with z(k) = [x(k), y(k), θ(k), d(k)]T ,
and v(k) =measurement noise.

The time update of the PF is p(x(k + 1)|Z) =∑N
i=1w

i
kδξi

k
(x(k)) where ξi

k∼p(x(k + 1)|x(k) = ξi
k)

and the state equation is x̂− = φ(x(k)) + L(k)U(k), where
φ(x(k)), L(k), and U(k) are defined in subsection IV-A.
At each run of the time update of the PF, the state vector
estimation x̂−(k + 1) is calculated N times, starting each
time from a different value of the state vector ξi

k. The
obtained results are given in Fig. 8.
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Fig. 7. Desirable trajectory (continuous line) and obtained trajectory using
EKF fusion based on odometric and sonar measurements (−.)
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Fig. 8. Desirable trajectory (continuous line) and obtained trajectory using
PF fusion based on odometric and sonar measurements (−.)

From the simulation experiments depicted it can be deduced
that the particle filter has better performance than the EKF in
the problem of estimation of the state vector of the mobile
robot, without being subject in the constraint of Gaussian
distribution for the obtained measurements (see fig. 9). The
number of particles influences the performance of the particle
filter algorithm. The accuracy of the estimation succeeded
by the PF algorithm improves as the number of particles
increases. The initialization of the particles, (state vector
estimates) may also affect the convergence of the PF towards
the real value of the state vector of the monitored system.
It should be also noted that the calculation time is a critical
parameter for the suitability of the PF algorithm for real-
time applications. When it is necessary to use more particles,
improved hardware and some new technologies, such as
making parallel processing available to embedded systems,
enable the PF to be implemented in real-time systems []8.
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Fig. 9. Precision of trajectory tracking (a) using EKF-based sensor fusion
(−.) with respect to the desirable trajectory (continuous line) (b) using PF-
based sensor fusion (−.) with respect to the desirable trajectory (continuous
line).

V. CONCLUSIONS

Extended Kalman and Particle filtering have been tested in
the problem of estimation of the state vector of a mobile
robot through the fusion of position measurements coming
from odometric and sonar sensors. The paper has summa-
rized the basics of the Extended Kalman Filter, which is
the most popular approach to implement sensor fusion in
nonlinear systems. The EKF is a linearization technique,
based of a first-order Taylor expansion of the nonlinear
state functions and the nonlinear measurement functions
of the state model. In the EKF, the state distribution is
approximated by a Gaussian random variable. Although the
EKF is a fast algorithm, the underlying series approximations
can lead to poor representations of the nonlinear functions
and the associated probability distributions. As a result, the
EKF can sometimes be divergent.
To overcome these weekness of the EKF as well as the
constraint of the Gaussian state distribution, particle filtering
has been introduced. Whereas the EKF makes a Gaussian
assumption to simplify the optimal recursive state estimation,
the particle filter makes no assumptions on the forms of
the state vector and measurement probability densities. In
the particle filter a set of weighted particles (state vector
estimates evolving in parallel) is used to approximate the
posterior distribution of the state vector. An iteration of the
particle filter includes particle update and weights update. To
succeed the convergence of the algorithm at each iteration
resampling takes place through which particles with low
weights are substituted by particles of high weights.
Simulations have been carried out to give a comparison of
the performance of the EKF and the particle filter algorithm
in the problem of mobile robot localization, through the fu-
sion of measurements coming from different sensors. These
simulations have shown that the particle filter is superior
than the EKF in terms of the accuracy of the state vector
estimation. The performance of the particle filter algorithm
depends on the number of particles and their initialization. It
can be seen that the PF algorithms succeeds better estimates

of the mobile robot’s state vector as the number of particles
increases, but on the expense of higher computational effort.
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