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1. Introduction.

Problems of optimal estimation under uncertainty and scalar optimal design of
experiment may be reduced to a problem of linear programming [1]. Problems of
ideal linear ideal trajectory correction and many problems of optimal design of ex-
periment may be solved with the help of multiparametrical (so-called generalized)
linear programming [3, 4, 5]. Traditional methods for solving these problems are
the simplex method and the the column-generate method respectively. While using
these methods two main difficulties may appear. Current basic matrix often turns
out to be be ill conditioned, and the solution is usually accompanied by a large
number of almost degenerate iterations thus accumulating large computational er-
rors [2]. Besides this convergence of the column-generate method is not proved.
An new efficient method for solving problems of this class the so-called skeleton
algorithm is proposed. This algorithm helps to avoid problems mentioned above
[6].

2. Idea of the skeleton algorithm.

Consider an ordinary linear programming problem:
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Here
m
xi are scalar optimization variables; other parameters are fixed:

m
ci are ob-

jective function’s coefficients,
m
ai ∈ Rm are columns of the condition matrix, and

m

b ∈ Rm is a right side vector,
m

b 6= 0. Let us call the number of linear conditions of
a problem a dimension of the problem. Here and below problems’ dimensions are
shown with an upper index.

Let IB be a set of indices of a basis {m
ai : i ∈ IB}. Let us construct a new

linear programming problem that has one additional column
m
a0 and an additional

variable
m
x0:
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Solutions of (1) and (2) are equal, besides this the basic feasible solution
m
x0 =

1,
m
x1 = 0, ...,

m
xn = 0 of (1) gives an objective function’s value equal to that given

by the
{

m
ai, i ∈ IB

}
basis in (2) [2].

Consider an auxiliary linear programming problem of dimension m− 1:

(3) min
m−1
xi

{
n∑

i=1

m−1
ci

m−1
xi :

n∑

i=1

m−1
xi

m−1
ai =

m−1
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m−1
xi ≥ 0∀ i

}
,

(4)
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m
ci −

m

π′
m
ai

is the so-called reduced cost coefficients,
m
π is any solution of

m
c0−

m

π′
m
a0 = 0,

m−1

b is a
vector such that conditions are simultaneous, and

m−1
ai are (m−1)-vectors obtained

from

(5)
m
ai = B

(
m−1
gi

m−1
ai

)
, i = 0, 1, ..., n,

where B = (
m
a0, V ), V is a m×(m−1)-matrix such that matrix B is nondegenerate.

Vector
m−1
ai ∈ Rm−1 is an image of

m
ai, and

m
ai is a prototype of

m−1
ai .

Proposition 1. [7, 8] If problem (3) has a solution, then current degenerate
basic solution of (2) is optimal. If the objective function’s value in (3) is unbounded
it is possible either to diminish the objective function’s value in (2), or to find out
unsolvability of problem (2).

According to [8] if the objective function of (3) is unbounded on the set of feasible
solutions, there is a set of indices S (|S| ≤ m) and values λj , such that for aj , j ∈ S
in (2) we have

(6)
∑

j∈S

λj
m−1
aj = 0 ⇔

∑

j∈S

λj
m
aj =

m
α

m
a0;

∑

j∈S

λj

m

∆j < 0; λj > 0, j ∈ S.

Using (5), (6) we get
m
α =

∑
j∈S

λj
m−1
gi , where values

m−1
gi are as in (5).

While using the skeleton algorithm we get S and vectors
m−1
aj , j ∈ S analytically

for a one-dimensional problem of linear programming (i.e., problem with one linear
condition).

Proposition 2. If
m
α ≤ 0, then the objective function in (2) is unbounded on

the set of feasible solutions. If
m
α > 0 the objective function in (2) decreases by∣∣∣∣∣

∑
j∈S

λj

m

∆j

∣∣∣∣∣ /
m
α when the basis

m
a0 is replaced with {m

ai : i ∈ S} ([8]).

We can use the same method to find out solvability or unsolvability of (3), i.e.,
we can construct an auxiliary problem of dimension m − 2, then a problem of
dimension m − 3, etc. Finally, we obtain a one-dimensional problem, i.e., a linear
programming problem, that has only one row. It may be solved analytically [6]. For
an k-dimensional auxiliary problem of the form (3) (k = m−1, ..., 1) it is convenient
to assume right side vector in (3) to be equal to one of the condition columns. Then
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extended problem for (3) can be obtained without matrix inversion. If we do so,

we can put
k
a0 =

k

b,
k
c0 = 1.

So, the skeleton algorithm results in solving a one-dimensional problem. If it has
a solution, then current basis in (1) is optimal. Vice versa a new basis

2
a1,

2
a2 of a

two-dimensional problem is found. According to (6), we have

(7)
2

λ1
2
a1 +

2

λ2
2
a2 =

2
α

2
a0.

Now, there are two variants.
1.

2
α ≤ 0 in (7). Then two-dimensional problem has no solution and we go over

to a three-dimensional problem rewriting (7) as

(8)
2

λ1
3
a1 +

3

λ2
2
a2 − 2

αpt(
2
a0) =

3
α

3
a0,

where pt(a) is a prototype of a. Going on with this we will reach an initial problem
(2) and replace a0 with a set of vectors.

2.
2
α > 0 in (7). Then the objective function’s value decreases according to

proposition 2. We then go over to an extended two-dimensional problem of the

form (2), find
2
a0 from (7), and consider a new one-dimensional problem. If

j
α >

0, j = 2, 3, ..., we diminish the objective function and check the solvability of a
j-dimensional problem using (j − 1)-dimensional auxiliary problem.

Important remark. If
2
α > 0 in (7) we are to calculate a prototype of

2
a0.

According to (7) this vector is a linear combination of two vectors. That is why
while manipulating auxiliary problems of dimension 2 or more we may obtain a
nonbasic optimal solution. It may be replaced with a basic solution using the ideas
of [9].

An idea of the skeleton algorithm was described here for an ordinary linear pro-
gramming problem. Everything is also just for the generalized linear programming
with the one exception: in some cases one-dimensional problem cannot be solved
analytically. However it is usually still easy to solve. The skeleton algorithm has no
degenerate iterations that is why it is convergent even for the generalized problem.

3. The algorithm.

Step 1. Construct a series of auxiliary problems of dimension m−1, m−2, ..., 1.
If all coefficients of the objective function are nonnegative for one of the constructed
problems, go to step 4. Vice versa after constructing one-dimensional problem go
to step 2.

Step 2. Solve one-dimensional problem. If it is solvable, then go to step 4. If it

is not solvable (i.e.,
1
α ≤ 0), then calculate

k
α, k = 2, 3, 4... for 2, 3, 4...-dimensional

auxiliary problems until some
j
α will be positive. Then go to step 3.

Step 3. We now know that
j
α > 0, and

k
α ≤ 0 for all k < j. Calculate new value

of coefficient
j−1
c0 and vector

j−1
a0 . Then using (4) calculate

k
ci for k = j−1, j−2, ..., 1,

and go to step 2.
Step 4. The end. Current solution in the initial m-dimensional problem is

optimal.
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4. Numerical experiments.

4.1. Minimax estimation problem. Consider an estimation problem with the
following model of measurements:

y(t) = H(t)θ + ξ(t), t ∈ T,

where θ is an m-vector of unknown parameters, t is time, y(t), ξ(t) are measure-
ment results and their errors, H (t) are known vectors. Let τ = {t1, ..., tn} be a set
of moments of measurements, y = (y(t1), ..., y(tn))′ respective vector of measure-
ments, l = b′θ the estimated parameter (b is a known vector). Let l̂(y) = x′y be
a linear algorithm of estimation, where x satisfies the condition of the algorithm
unbiasedness l̂(H ′θ) = l = b′θ, which is equivalent to the equality Hi

.= H (ti):
n∑

i=1

xiHi = b. Assuming |ξi| ≤ 1, we formulate the minimax problem:

L∗ = min
τ,xi

max
|ξi|≤1

{
l̂ − l : τ ∈ T,

n∑

i=1

xiHi = b

}
.

This may be reduced to a linear programming problem [1]

L∗ = min
τ,xi1,xi2

{
n∑

i=1

(x1i + x2i) :
n∑

i=1

(x1i − x2i)Hi = b; x1i, x2i ≥ 0, i = 1, ..., n

}
.

As opposed to an ordinary linear programming here the number of variables is
infinitely. While using simplex-method we search for a basic solution, i.e., consider
only such τ that consist of m moments. Then we introduce to the basis a vector
from a set {H(t) : t ∈ T} such that ∆(t) = 1∓π′H(t) reaches its minimum on this
vector. This is the idea of the column-generate method.

Consider the following measurement model:

y(t) = θ1 + θ2 · sin t + θ3 · cos t + ξ(t), t ∈ [0, 1] .

Let us take θ2 as a controlled parameter l, and vectors corresponding to the mo-
ments 0.88, 0.888, 0.8888 as an initial basis. This case is unfavorable for the simplex-
method because the basis matrix is ill-conditioned. Numerical results are shown in
table 1. (One iteration of the skeleton algorithm is all calculations that decrease
the objective function in the initial problem).

Table 1.
iteration simplex-method skeleton algorithm

obj. func. opt. moments obj. func. opt. moments
1 483039.19 {0.88, 0.888, 0.8888} 483039.19 {0.88, 0.888, 0.8888}
2 2502.10 {0, 0.888, 0.8888} 7.83 {0, 0.5, 1}
3 8.85 {0, 0.444, 0.8888}
4 7.93 {0, 0.444, 1}
5 7.83 {0, 0.5, 1}

Number of elementary operations is 1,245 and 995 respectively.

4.2. Optimal problem of linear ideal correction of an aircraft trajectory.
Let l be a k-vector of parameters of the system, and let b be deviation of l from
its nominal value. Suppose that l changes by the value of Uiui while correcting the
trajectory with the impulse ui, i = 1, ..., n, where Ui is a matrix with m columns
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and dim(ui) rows. Now assume that correction expenses are proportional to ‖ui‖,
and formulate an optimal problem of linear ideal correction according to [1, 3]

min
ui

{
n∑

i=1

‖ui‖ :
n∑

i=1

Uiui = b

}
.

This problem may be reduced to the following generalized linear programming
problem:

(9) min
xi,ai

{
n∑

i=1

xi :
n∑

i=1

xiai = b, xi ≥ 0, ai = Uiγi, ‖γi‖= 1,i = 1, ..., n

}
.

Consider a problem of correction for the single mass point in space, that follows a
parabolic path on the time interval [T, 3T/2], where moment T corresponds to the
highest point of the trajectory. Let us take deviations of the point’s coordinates
and velocities at the moment t as a correction impulse. Comparison of the skele-
ton algorithm and the simplex-method for problem (9) shows an inefficiency of the
latter (see Table 2).

Table 2.
iteration simplex-method skeleton algorithm

obj. func. opt. moments obj. func. opt. moments
1 1005.11 {2.2, 2.5, 2.8} 1005,11 {2.2, 2.5, 2.8}
2 232.01 {2, 2.5, 2.8} 12,03 {2, 2.5, 3}
3 12.05 {2, 2.5, 3}
4 12.04 {2, 2.25, 3}
5 12.03 {2, 2.13, 3}
6 12.03 {2, 2.07, 3}
7 12.03 {2, 2.04, 3}
8 12.03 {2, 2.02, 3}
9 12.03 {2, 2.01, 3}
10 12.03 {2, 2.00, 3}

Total time of calculations in MatLab is 8 and 1.2 seconds respectively.

4.3. Nonbasic solution. As it was mentioned above, while using the skeleton
algorithm we may obtain a nonbasic optimal solution. Here is a simple example of
such a situation. Let us solve a standard linear programming problem

min
x
{c′x : Ax = b, x ≥ 0} ,

where c = (− 1
2 ,−1, 0, 0, 0, 0, 0, 0)′, b = (4, 7, 10, 14, 32, 24)′,

A =




−2 1 1 0 0 0 0 0
−1 2 0 2 0 0 0 0
0 1 0 0 1 0 0 0
1 2 0 0 0 6 0 0
2 1 0 0 0 0 1 0
2 −3 0 0 0 0 0 3




.

Simplex method gives us a basic optimal solution x(1) = (8, 10, 10, 1, 0, 0, 6, 38/3)′,
while the result of the skeleton algorithm’s computations is x(2) = (10, 9, 10, 1, 3, 3/4, 9, 11)′.
This is a nonbasic solution, that gives the same value of the objective function.



6

5. Conclusion.

The subject of this paper is a new algorithm of linear programming, which can
be used for the minimax estimation problem and optimal problem of linear ideal
correction of a trajectory. Proposed algorithm helps to avoid almost degenerate
iterations and large computational errors. The algorithm is easy enough because it
does not use inversion of matrices. For generalized linear programming problems it
is not necessary to store all arrays of columns for auxiliary problems in computer’s
memory due to the columns’ analytic representation. That is why the algorithm is
especially effective for generalized linear programming. However extra numerical
experiments are needed to find out the algorithm’s efficiency.

This work was supported by the Russian Foundation for Basic Research, project
no.09-08-00202a.

References

[1] B. Ts. Bakhshiyan, R. R. Nazirov, and P. E. El’yasberg. Determination and Correction of
Motion (Nauka, Moscow, 1980) [in Russian].

[2] B. Ts. Bakhshiyan, K. S. Fedyaev. On the Solution of Almost Degenerate and Ill-
Conditioned Problems of Linear Programming Arising when Controlling a System // Journal
of Computer and Systems Sciences International, Vol. 44, No. 6, 2005, pp. 908919.

[3] M. L. Lidov. Mathematical Analogy between Some Optimal Problems of Trajectory Cor-
rection and of Choice of the Measurement Sets and Algorithms of Their Solutions // Kosm.
Issl. 9 (5) (1971).

[4] B. Ts. Bakhshiyan and V. N. Solov’ev. Theory and Algorithms for Solving Problems of L-
and MV-Optimal Design of Experiment // Avtom. Telemekh., No. 8 (1998), pp. 80-96.

[5] M. I. Voiskovskii. Simplex Algorithm for Searching E-Optimal Plans, // Izv. Ross. Akad.
Nauk, Teor. Sist. Upr. 40 (2) (2001) [J. Comp. Syst. Sci. Inter. 40 (2) (2001)].

[6] B. Ts. Bakhshiyan, A. V. Goryainov. The skeleton algorithm for solving linear programming
problems and its applications for optimal problems of estimation. // MAI Aerospace Journal
2008. 5 (No. 2) pp. 5-16. [in Russian]

[7] B. Ts. Bakhshiyan. Optimality Criteria and Algorithms for Solving Degenerate and Gener-
alized Problems of Linear Programming // Ekon. Mat. Met. 28 (2) (1989).

[8] B. Ts. Bakhshiyan, A. I. Matasov, and K. S. Fedyaev. On Solution of Degenerate Problems
of Linear Programming // Avtom. Telemekh., No. 1 (2000). pp. 105 - 117.

[9] R. Rockafellar, Convex Analysis (Princeton University Press, Princeton, 1970


