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Abstract— The problem of choice of optimal inputs for
control system parameters identification is studied. The un-
certain items are assumed to be unknown but bounded, the
problem is treated in the framework of guaranteed (set-
membership) approach. The goal of input design is to get
maximum information about system parameters from available
observations. The integral of information function over the set
of a priori constraints on parameters is considered as a criterion
of optimality.

I. I NTRODUCTION

Generally differential equations used for modelling of
physical and mechanical systems contain unknown param-
eters, which are estimated on the basis of information
provided by indirect experimental observations. The goal of
experimental design is to get maximal information about
system parameters from available observations. The con-
ventional approach to the experiments design is based on
stochastic models for uncertain parameters and measurement
errors. An alternative guaranteed approach states from deter-
ministic model of uncertainty with set-membership descrip-
tion of the uncertain items [1-5]. These items are considered
to be unknown but bounded with preassigned bounds. Such
model of uncertainty arises in many applied problems of
information processing in physics. Within the framework of
guaranteed approach the set of parameters, consistent with
the system equations, measurements, and a priori constraints
called information (feasible) set is considered as the solution
of estimation problem.

In this paper we consider the problem of optimal input
choice [6] for guaranteed estimation of the parameters of
dynamic system on the basis of indirect observation. The
information sets in the problem may be described as the
level sets for so-called information function (information
state) [5,7,8]. An information function is defined as a value
function for a certain auxiliary optimal control problem. The
integral of information function over the set of a priori
constraints on parameters is considered as a criterion of
optimality. This allows to avoid, when designing an optimal
input, the immediate construction of information sets. It is
shown that considered problem may be reduced to an optimal
control problem for the trajectory tubes of the system.

The paper consists of three parts. First, we consider the
input design problem for a linear model in Hilbert space in
order to clarify the details of the scheme used in the paper.

The research was supported by the Russian Foundation for Basic Re-
search, Project no. 06-01-00332.

M. I. Gusev is with Institute of Mathematics and Mechanics, Ural Branch
of RAS, 620219, Yekaterinburg, Russia; E-mail:gmi@imm.uran.ru

Next, we describe an algorithm of solution of the problem
in the case of the system described by nonlinear ODE with
uncertain parameters in the right-hand side of the equation. In
this case the systems with disturbances only in measurement
equation are considered. In the last part the linear systems
with disturbances in measurement and system equations are
regarded.

II. L INEAR MODELS

Consider the linear model, connecting available for mea-
surement outputy with unknown vector of parametersq =
(q1, ..., qm) under the equation

y =
m∑

i=1

qia
i(u) + ξ.

Here ai : U → H are given maps from the given set of
control parametersU to the real Hilbert spaceH, ξ ∈ H is
treated as a measurement error, ,u ∈ U is a control.

Assume that all advance information onq and ξ is given
by the conditions

q = (q1, ..., qm) ∈ Q ⊂ Rm, ξ ∈ Ξ = {ξ : 〈ξ, ξ〉 ≤ 1},
(1)

where 〈·, ·〉 is an inner product inH, Q is a compact
set in Rm. An experimental design problem consists of
two stages. The fist one is the identification problem, the
second is the choice of optimal input, providing the best
quality of identification. The identification problem is related
to an estimation of unknown value ofq on the basis of
measurement of the outputy. The solution of this problem
is the information (feasible) set [2,5] consisting of all values
of q consistent with the results of measurement and a priori
data.

Let y, u are given. An information set is determined as
follows

Q̂(y, u) = {q ∈ Q : ∃ ξ, 〈ξ, ξ〉 ≤ 1, y =
m∑

i=1

qia
i(u) + ξ}.

The setQ̂ contains an unknown true value ofq.
The quality of identification usually is characterized by the

value of some scalar functionalΩ(Q̂(y, u)), which is defined
on the class of sets. A radius, diameter or volume of the set
may be considered as a such functional.

The problem of optimal input choice takes on the fol-
lowing form: to find the control (input)u ∈ U , solving the
problem

max
y

Ω(Q̂(y, u)) → min
u∈U

.



Here the maximum is taken in all possible values ofy, or,
equivalently, in all pairsq, ξ, satisfying constraints (1).

A disadvantage of such approach is a necessity of con-
structing of information sets for calculation of optimal inputs.
The solution of last problem requires a laborious computing
procedures (especially in the case of nonlinear identification
problems, where an information set may be nonconvex or
even nonconnected).

Further we modify the statement of the problem in order to
avoid the direct constructing of information sets in the pro-
cess of calculation of optimal input. The proposed approach
is based on the notion of information function (information
state) of the problem. In the case of linear model this function
V (y, u, q) is determined by the equality

V (y, u, q) = 〈y −
m∑

i=1

qia
i(u), y −

m∑

i=1

qia
i(u)〉.

Obviously, under givenu, y

Q̂(y, u) = {q ∈ Q : V (y, u, q) ≤ 1}.
If for the controlsû, ū under giveny

V (y, û, q) ≤ V (y, ū, q) (2)

for every q ∈ Q, then Q̂(y, ū) ⊂ Q̂(y, û). Henceū is more
preferable than̂u because it gives more precise estimate of
unknown parameter.

Consider a scalar functional on the set of information
states, which is monotone with respect relation (2) and is
defined by the following way

I(y, u) =
∫

Q

V (q, y, u)dµ(q),

whereµ is a nonnegative measure defined on theσ-algebra of
Lebesgue measurable subsets ofQ with the propertyµ(Q) =
1. If Q has a nonzero Lebesgue measure, then forµ we can
take the measure defined by the equality

µ(E) =
∫

E

α(q)dq,

whereα is a given nonnegative function (weight function),
the integral of which over the setQ equals 1. Another
example is a measureµ concentrated at points of a given
finite subset ofQ.

Denote byq∗ the true value of uncertain parameter and
by ξ∗— the realization of disturbance in measurements.
The outputy∗ is a function ofq∗, ξ∗ and inputu: y∗ =
y∗(q∗, ξ∗, u).

Depending on way of accounting the dependence ofy
from parameters the following statements of the problem are
possible.

Problem 1: Find u ∈ U , maximizing the functional

I1(y∗, u) =
∫

Q

V (q, y∗(q∗, ξ∗, u), u)dµ(q). (3)

Problem 2: Find u ∈ U , maximizing the functional

I2(q∗, u) = inf
ξ∗∈Ξ

∫

Q

V (q, y∗(q∗, ξ∗, u), u)dµ(q). (4)

Problem 3: Find u ∈ U , maximizing the functional

I3(u) = inf
ξ∗∈Ξ,q∗∈Q

∫

Q

V (q, y∗(q∗, ξ∗, u), u)dµ(q). (5)

Introduce the following definitions. Let

K = {k ∈ Rm : ki ∈ {0, 1}, i = 1, ...,m},
q̄ ∈ Rm. For q ∈ Rm denote aspk(q) a vector with
coordinatespi = (−1)kiqi, i = 1, ..., m. The Q q̄ is said to
be symmetrical, if fromq ∈ Q follows thatpk(q−q̄)+q̄ ∈ Q
for everyk ∈ K. For the setE ⊂ Q denote

Ek = pk(E − q̄) + q̄.

It is obvious, that for measurableE the set Ek is also
measurable; ifQ q̄ is symmetricalEk ⊂ Q.

Assumption 1:There exists̄q ∈ Q such that the setQ and
the measureµ are q̄-symmetrical.
Let assumption1 holds. DenoteQ̄ = Q− q̄, asµ̄ denote the
measureQ̄, defined by the equalitȳµ(E) = µ(E + q̄).

Let

ỹ = y −
m∑

i=1

q̄ia
i(u) =

m∑

i=1

(qi − q̄i)ai(u) + ξ.

Then

I(y, u) =
∫

Q

V (q, y, u)dµ(q) =
∫

Q

〈ỹ, ỹ〉dµ(q)

−2
m∑

i=1

∫

Q

(qi − q̄i)dµ(q)〈ỹ, ai(u)〉+

+
m∑

i,j=1

pij(u)
∫

Q

(qi − q̄i)(qj − q̄j)dµ(q),

wherepij(u) = 〈ai(u), aj(u)〉.
Lemma 1:Under assumption1 the following equalities

hold ∫

Q

(qi − q̄i)dµ(q) = 0, i = 1, ..., m,

∫

Q

(qi − q̄i)(qj − q̄j)dµ(q) = 0, i, j = 1, ..., m, i 6= j.

This lemma follows from the elementary properties of
Lebesgue integral. From lemma1 it follows that

∫

Q

V (q, y, u)dµ(q) = 〈ỹ, ỹ〉+
m∑

i=1

Aipii(u),

whereAi =
∫

Q
(qi − q̄i)2dµ.

Calculating the infimum inξ∗, we get

I2(q∗, u) = inf
ξ∗∈Ξ

∫

Q

V (q, y∗(q∗, ξ∗, u), u)dµ(q)



= φ((q∗ − q̄)>P (u)(q∗ − q̄)) +
m∑

i=1

Aipii(u),

where P (u) is a matrix with the elementspij(u), i, j =
1, ...,m and the functionφ(x) is defined by the equality

φ(x) =
{

0 0 ≤ x ≤ 1,
(
√

x− 1)2 x ≥ 1.

Calculating the infimumI2 in q∗, we have

I3(u) = inf
q∗

I2(q∗, u) =
m∑

i=1

Aipii(u).

Statement 1:Let for everyu ∈ U , q∗ ∈ Q

(q∗ − q̄)>P (u)(q∗ − q̄) ≤ 1, (6)

and assumption1 holds. Then the solutions of problems2,
3 coincide.
If inequality (6) holds, the first term in formula (4) for
functionalI2 equals to zero. This implies the validity of the
statement.

III. N ONLINEAR SYSTEMS WITH NOISE IN

MEASUREMENTS

Consider the control system

ẋ = f(t, q, x, u(t)), t ∈ [t0, t1], x(t0) = x0, (7)

(x ∈ Rn, u ∈ Rr) with the right-hand sidef depending
on unknown parameterq ∈ Rm. We assume that all a priori
information onq is given by the inclusionq ∈ Q whereQ is a
compact set inRm. As an admissible control (input) we will
consider a Lebesque-measurable functionu : [t0, t1] → U ,
whereU ⊂ Rr. We assume thatf(t, q, x, u) is continuously
differentiable inx on [t0, t1]×Q×Rn×U . The solution of
system (7) is denoted asx(t, q) (or x(t, q, u(·)).

Consider the measurement equation on[t0, t1]

y(t) = g(t, x(t)) + ξ(t), t ∈ [t0, t1], (8)

corrupted by unknown but bounded noiseξ(t). An advance
information onξ(t) is assumed to be given by the inclusion

ξ(·) ∈ Ξ, (9)

whereΞ is a bounded set in the spaceLk
2 [t0, t1]. Suppose

that
Ξ = {ξ(·) : W (ξ(·)) ≤ 1},

where

W (ξ(·)) =
∫ t1

t0

ξ>(t)Rξ(t)dt.

HereR is a given positively defined matrix. Lety(t) be the
result of measurements, generated by unknown ”true” value
of q∗ ∈ Q, input u(t), and measurement errorξ(t). The
function q → V (q, y(·), u(·)), defined by the equality

V (q, y(·), u(·)) = W (y(·)− g(·, x(·, q)))
is said to be an information function(information state) of
the problem (7),(8). The setQ(y(·), u(·)) of all parameters

q ∈ Q that are consistent with (7), (8) and a priori constraints
is referred to as the information set relative to measurement
y(t) []. It follows directly from definitions that

Q(y(·), u(·)) = {q ∈ Q : V (q, y(·), u(·)) ≤ 1}.

Unknownq∗ belongs to the information set.
We shall consider an integral of information function as a

functional of the problem

I(y(·), u(·)) =
∫

Q

V (q, y(·), u(·))dµ(q). (10)

Hereµ is a nonnegative measure defined on Lebesque subsets
of Q such thatµ(Q) = 1. The functionalI is nonnegative,
the most value ofI corresponds to a more accurate estimate
of unknown quantity of parameterq.

The integral (13) depends onu(·) and the result of
measurementsy(·). In turn, y(t) = y∗(t) + ξ(t), where
y∗(t) = g(t, x(t, q∗, u(·))) andξ(t) is the measurement error.
In the worst case, the value ofI is equal to

J(u(·)) = inf
W (ξ(·))≤1

∫

Q

V (q, y(·) + ξ(·), u(·))dµ(q).

Direct calculations lead to the following formula forJ

J(u(·)) = I1(u(·)) + φ(I2(u(·))), (11)

where

I1(u(·))) =

t1∫

t0

∫

Q

r(t, q)>Rr(t, q)dµ(q)dt,

I2(u(·))) =

t1∫

t0

∫

Q

r(t, q)>dµ(q)R
∫

Q

r(t, q)dµ(q)dt,

r(t, q) = g(t, x(t, q∗))− g(t, x(t, q)),

φ(x) =
{ −x if 0 ≤ x ≤ 1

1− 2
√

x if x ≥ 1.

Thus the problem of optimal input design is equivalent
to the maximization of the functionalJ on the tubes of
trajectories of uncertain system (7). It is similar in a certain
way to the problems of of beam optimization [9].

The necessary conditions of optimality for this problem
constitute the basis for constructing the numerical algorithms
[10,11]. In the next picture the results of numerical sim-
ulation for the system describing oscillations of nonlinear
pendulum are presented. The orange and blues lines denotes
the boundaries of information sets corresponding to optimal
and some non optimal inputs. These information sets are
constructed for the case of hard ( magnitude) constraints on
measurement noise:|ξ(t)| ≤ 1, t ∈ [t0, t1].
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Fig. 1. Information sets for nonlinear pendulum

IV. L INEAR SYSTEMS WITH UNCERTAIN DISTURBANCES

In this section we consider the choice of optimal inputs
for identifying the parameters of a control system whose
dynamics is corrupted by unknown but bounded noise.

Consider the following control system

ż = A(q)z + Bu(t) + w(t), z(t0) = z0, (12)

with matrix A depending on unknown parameterq ∈ Rm.
We assume that all the ”a priori” information onq is given
by the inclusionq ∈ Q, whereQ is a compact set inRm. As
an admissible control (input) we will consider a Lebesgue-
measurable functionu : [t0, t1] → U , whereU ⊂ Rr.

Consider the measurement equation to be specified by the
equality

y(t) = Cz(t) + ξ(t), t ∈ [t0, t1].

whereξ(t) is the measurement error. The advance informa-
tion on ξ(t) andw(t) is assumed to be given by inequalities

W1(ξ(·)) =
∫ t1

t0

ξ>(t)R1ξ(t)dt ≤ 1,

W2(w(·)) =
∫ t1

t0

w>(t)R22(t)dt ≤ 1.

HereR1, R2 are given positive matrices.
An information set relative to measurementy∗(t) may be

expressed as a level set

Q̂(y∗(·)) = {q ∈ Q : V (q, y∗(·), u(·)) ≤ 1},
where ”information state”V (q, y∗(·), u(·)) is the value func-
tion for the following extremal problem

V (q, y∗(·), u(·)) = min
W2(w(·))≤1

W1(y∗(·)− Cz(·)).

We shall consider as a criterion of optimality

I(y∗(·), u(·)) =
∫

Q

V (q, y∗(·), u(·))dµ(q), (13)

the problem will therefore consist in maximizingI over
u(t) ∈ U , t ∈ [t0, t1].

For calculating ofV (q, y∗(·), u(·)) we pass to a solution
of the dual convex programming problem

V (q, y∗(·), u(·)) = sup
α>0

φ(α),

whereα ∈ R andφ(α) = φ(α, q, u(·))
φ(α) = min

w(·)
{W1(y∗(·)− Cz(·)) + αW2(w(·))− α}. (14)

Here (14) is a linear-quadratic tracking problem whose
solution may be obtained in explicit form. Let̄x(t, q) be
the solution of system

˙̄x = A(q)x̄(t) + Bu(t), x(t0) = z0, (15)

and ȳ(t) = y∗(t) − Cx̄(t, q). Then the value ofφ(α) may
be expressed as follows

φ(α) = min
w(·)

Jα(w(·)),

where

Jα(w(·)) =
∫ t1

t0

(ȳ − Cx)>R1(ȳ − Cx)dt

+α

∫ t1

t0

w>R2wdt− α,

the minimum is sought for among the trajectories of system

ẋ = A(q)x + w(t), x(t0) = 0.

Solving the last problem, we come to the expression

ϕ(α) = (x(t0)− g(t0),K(t0)(x(t0)− g(t0))),

whereK(t), g(t) arrive due to the Riccati system

K̇ = −KA−A>K

+1/αKR−1
2 K − C>R1C, (16)

with
ġ = −[A− 1/αR−1

2 K]>g

−C>R1(y∗(t)− Cx̄), (17)

and boundary conditionsK(t1) = 0, g(t1) = 0.
Since x(t0) = 0 we haveϕ(α) = (g(t0),K(t0)g(t0)).

Thus, ∫

Q

V dµ =
∫

Q

sup
α>0

φ(α, q, u(·))dµ.

Substituting the supremum over scalarα by one over con-
tinuous functionsα(q), we will have

I(y∗(·), u(·)) =
∫

Q

sup
α(q)>0

φ(α(q), q, u(·)))dµ

= sup
α(q)>0

∫

Q

φ(α(q), q, u(·))dµ.

Thus, the resulting problem is as follows
∫

Q

φ(α(q), q, u(·))dµ → max
α(·),u(·)

min
ξ∗(·),w∗(·)

(18)



over the solutions of system (15), (16), (17). Here (18) is
a nonstandard control problem, since the control function
actually consists of two parts – a conventional function of
time u(t) and a distributed controlα(q).

V. CONCLUSION

In the present work, a problem of constructing an opti-
mal input for identification of control system parameters is
considered. The integral of an information function of the
system over the set of a priori constraints on parameters
is suggested for the optimality criterion. This allows us to
avoid, when designing an optimal input, the immediate con-
struction of information sets. The problems of constructing
the information sets and of design of optimal inputs thus are
separated. The proposed scheme may be applied to design
of optimal inputs for nonlinear systems with measurements
corrupted by unknown but bounded noise. Under the as-
sumption that measurement errors satisfy integral quadratic
constraints, the considered problem is transformed into an
optimal control problem in which equations of the system
depend on a parameter and the functional contains the
integral over the parameter. Optimality conditions in the form
of the Pontryagin maximum principle and a formula of the
functional gradient for the last problems constitute a basis
for developing the numerical algorithms. The integration
measure may be used to control the parameters of algorithms.
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