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Abstract
This paper deals with the state estimation problem

for uncertain dynamical control systems with a special
structure described by differential equations with im-
pulsive control under bilinear uncertainty and with un-
certainty in initial states. The matrix included in the
differential equations of the system dynamics is uncer-
tain but bounded. The bounds of admissible values of
this matrix coefficients are known. The algorithms for
constructing external ellipsoidal estimates of reachable
sets for such bilinear uncertain systems are presented
here.
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1 Introduction
In this paper we study impulsive control systems

with unknown but bounded uncertainties related to
the case of a set-membership description of uncer-
tainty ([Kurzhanski and Valyi, 1997; Schweppe, 1973;
Walter and Pronzato, 1997; Boyd, El Ghaoui, Feron
and Balakrishnan, 1994]). Here we develop the set-
membership approach based on ellipsoidal calculus for
the special nonlinear system with uncertainty.
Bilinear dynamical systems are a special kind of

nonlinear systems representing a variety of important
physical processes [Boscain, Chambrion and Sigalotti,
2013; Boussaı̈d, Caponigro and Chambrion, 2013;
Ceccarelli and etc., 2006; Gough, 2008; Nihtila,
2010]. A great number of results related to control
problems for such systems has been developed ear-
lier, among them we mention here [Chernousko, 1996;
Filippova and Lisin, 2000; Kurzhanski and Filippova,
1993]. Reachable sets of bilinear systems in general
are not convex, but have special properties (for exam-
ple, they have star-shaped form). In the paper we con-
sider the guaranteed state estimation problem and use

ellipsoidal calculus for the construction of external es-
timates of reachable sets of such systems.

Also we consider a more complicated case and gener-
alize earlier results [Filippova and Matviychuk, 2015;
Matviychuk, 2016]. Now the constraints on the uncer-
tain matrix of the dynamics systems has a more com-
plex structure. The algorithms of constructing external
ellipsoidal estimates for studied systems are given.

2 Basic Notations

Let Rn be then–dimensional vector space,compRn

be the set of all compact subsets ofR
n, convRn be

the set of all convex and compact subsets ofR
n, Rn×n

stands for the set of all realn× n–matrices andx′y =
(x, y) =

∑n
i=1 xiyi be the usual inner product of

x, y ∈ R
n with prime as a transpose,‖x‖ = (x′x)1/2.

Let I ∈ R
n×n be the identity matrix,Tr(A) be the

trace ofn × n-matrix A (the sum of its diagonal ele-
ments),diag b = diag{bi} be the diagonal matrixA
with aii = bi wherebi are components of the vectorb.
For a setA ⊂ R

n we denote its closed convex hull
ascoA.

We denote byB(a, r) = {x ∈ R
n : ‖x− a‖ ≤ r} the

ball inR
n with centera ∈ R

n and radiusr > 0 and by

E(a,Q) = {x ∈ R
n : (Q−1(x− a), (x− a)) ≤ 1}

the ellipsoid inRn with centera ∈ R
n and symmetric

positive definiten× n-matrixQ.

Denote by h(A,B) the Hausdorff dis-
tance between setsA,B ∈ R

n, h(A,B) =
max{h+(A,B), h−(A,B)}, where h+(A,B) and
h−(A,B) are the Hausdorff semidistances between
A and B, h+(A,B) = sup{d(x,B) : x ∈ A},
h−(A,B)=h+(B,A), d(x,A)= inf{‖x− y ‖: y∈A}.



3 Problem Formulation
Consider the following bilinear impulsive control sys-

tem

dx(t) = A(t)x(t)dt +B(t)du(t), (1)

x(t0 − 0) = x0, t ∈ [t0, T ],

herex ∈ R
n, vector-functionB(·) ∈ R

n is continuous
on [t0, T ]. Then × n–matrix functionA(t) in (1) has
the special form

A(t) = A0 +A1(t) +A2(t), t ∈ [t0, T ] (2)

where A0 ∈ R
n×n is given and the measurable

A1(t), A2(t) ∈ R
n×n are unknown but bounded

A(t) ∈ A = A0 +A1 +A2, t ∈ [t0, T ], (3)

A1(t) ∈ A1 =
{

A = {aij} ∈ R
n×n :

|aij | ≤ cij , i, j=1, . . . , n
}

,
(4)

A2(t)∈A2 = {A ∈ R
n×n : A = diag a,

a = (a1, . . . , an) ∈ A0},
(5)

A0 = {a ∈ R
n :

n
∑

i=1

|ai|
2 ≤ 1}

wherecij ≥ 0 (i, j = 1, . . . n) are given.
The impulsive control functionu ∈ R

n is the scalar
function of bounded variation on[t0, T ], monotonically
increasing and right-continuous int ∈ [t0, T ]. We as-
sume that for someµ > 0 we have

Var
t∈[t0,T ]

u(t) = sup
{ti}

k
∑

i=1

|u(ti)− u(ti−1)| ≤ µ,

supremum is taken over all{ti} such thatti : t0 ≤
t1 ≤ . . . ≤ tk = T .
Denote byU the class of all admissible controlsu(·).
The initial conditionx(t0−0) = x0 for the system (1)

is assumed to be unknown but bounded

x0 ∈ X0 = E(a0, Q0). (6)

Let the functionx(t) = x
(

t; t0, x0, A(·), u(·)
)

be a
solution to dynamical system (1)–(6) with impulsive
controlu(·) ∈ U , with initial statex0 ∈ X0 and with a
matrixA(·) ∈ A.
Thetrajectory tubeX (·) = X (·;X0,A,U) of the sys-

tem (1) is defined as the following set (see also [Filip-
pova and Matviychuk, 2011])

X (·) =
⋃

{

x(·) = x
(

·; t0, x0, A(·), u
)

:

x0 ∈ X0, A(·) ∈ A, u ∈ U
}

(7)

and thereachable setof the system (1) at the timet
is the cross-sectionsX (t) of the tubeX (·) (7) at the
instantt (t ∈ [t0, T ]).
The main problem considered in this paper is to find

the external ellipsoidal estimates for reachable sets
X (t) of the dynamic control systems (1)–(6) with un-
certain matrix of the system and uncertain initial state
basing on the special structure of the dataA, U andX0.

4 Main Results
In this section we apply the techniques of the

ellipsoidal calculus [Kurzhanski and Valyi, 1997;
Chernousko, 1994] to find the estimates of the reach-
able setsX (t), t ∈ [t0, T ]. Consider first some auxil-
iary results.

4.1 Bilinear System
Bilinear dynamic systems [Kurzhanski and Filippova,

1993] are a special class of nonlinear systems rep-
resenting a variety of important physical processes
[Boscain, Chambrion and Sigalotti, 2013; Boussaı̈d,
Caponigro and Chambrion, 2013; Gough, 2008; Ni-
htila, 2010]. Reachable sets of bilinear systems in gen-
eral are not convex, but have special properties (for ex-
ample, they are star-shaped). We use ellipsoidal calcu-
lus and consider here the external estimates of reach-
able sets of such uncertain control systems.
Consider first the following bilinear system

ẋ = A(t)x, t0 ≤ t ≤ T,

x0 ∈ X0 = E(a0, Q0), A(t) ∈ A,
(8)

wherex ∈ R
n, the setA is defined in (3).

Thereachable setX (t) = X (t;X0,A) at timet (t0 <
t ≤ T ) of system (8) is defined as the following set

X (t) =
⋃

{

x(t) = x(t; t0, x0, A(t)) :

x0∈X0, A(t)∈A
}

.
(9)

Note that the reachable setsX (t) need not be convex
for considering bilinear system. However, these sets
have other geometrical properties.

A setZ ⊆ R
n is calledstar-shaped(with centerc) if

c+ λ(Z − c) ⊆ Z for all λ ∈ [0, 1].

The set of all star-shaped compact subsetsZ ⊆ R
n

with centerc will be denoted asSt(c,Rn), StRn =
St(0,Rn).

Assumption 1. For everyt ∈ [t0, T ] the inclusion
0 ∈ U is true. The inclusion0 ∈ X0 is true.

We will assume further that Assumption 1 is satisfied.

Theorem 1. [Kurzhanski and Filippova, 1993]Under
Assumption 1 the reachable setsX (t) are star-shaped
and compact sets for allt ∈ [t0, T ] (X (t) ∈ StRn).



Let ρ(l|C) be thesupport functionof a convex com-
pact setC ∈ convRn, i.e.,

ρ(l|C) = max{l′c : c ∈ C}, l ∈ R
n .

We will denote theMinkowski functionof a setM ∈
StRn by

hM (z) = inf{t > 0 : z ∈ tM, z ∈ R
n}.

We need the following notation

M∗X = {z ∈ R
n : z = Mx, M ∈ M, x ∈ X},

whereM ∈ convRn×n, X ∈ convRn.
Then the evolution equation known as theintegral

funnel equation[Kurzhanski and Filippova, 1993;
Kurzhanski and Valyi, 1997] that describes the dynam-
ics of star-shaped trajectory tubes is given in the fol-
lowing theorem.

Theorem 2. [Filippova and Lisin, 2000]The trajec-
tory tubeX (t) of the bilinear differential system (8)
with constraints (3)–(6) is the unique solution to the
evolution equation

lim
σ→+0

σ−1h
(

X (t + σ), (I + σA) ∗ X (t)
)

= 0, (10)

with initial conditionX (t0) = X0, t ∈ [t0, T ].

From Theorem 2 we have

X (t0 + σ) ⊆ (I + σA) ∗ X0 + o(σ)B(0, 1),

whereσ−1o(σ) → 0 for σ → +0. Taking into ac-
count (3), we note that

(I + σA) ∗ X0 =

= (I + σ(A0 +A1)) ∗ X0 + σA2 ∗ X0,
(11)

where setsA1 andA2 are defined in (4) and (5) respec-
tively.
Consider the auxiliary bilinear system

ẋ = A(t)x, t ∈ [t0, T ],

x0 ∈ X0 = E(a0, Q0), A(t) ∈ A0 +A1.
(12)

The external ellipsoidal estimate of set
(I + σ(A0 +A1)) ∗ X0 may be found by apply-
ing the following theorem.

Theorem 3. [Chernousko, 1996]Let a∗(t) andQ∗(t)
be the solutions of the following system of nonlinear
differential equations

ȧ∗ = A0a∗, a+1 (t0) = a0, (13)

Q̇∗ = A0Q∗ +Q∗A0′ + qQ∗ + q−1G, (14)

Q∗(t0) = Q0, t0 ≤ t ≤ T,

q =
(

n−1 Tr ((Q+)−1G)
)1/2

,

G = diag
{

(n− v)
[

n
∑

i=1

cji|a
+
i |+

+
(

max
σ={σij}

n
∑

p,q=1

Q+
pqcjpcjqσjpσjq

)1/2
]2}

.

Here the maximum is taken over allσij = ±1, i, j =
1, . . . , n, such thatcij 6= 0 and v is a number of
such indicesi for which we have:cij = 0 for all
j = 1, . . . , n. Then the following external estimate for
the reachable setX (t) of the system(12) is true

X (t) ⊆ E(a∗(t), Q∗(t)), t0 ≤ t ≤ T. (15)

Corollary 1. Under conditions of the Theorem 3 the
following inclusion holds

(I + σ(A0 +A1)) ∗ X0 ⊆

⊆E(a∗(t0 + σ), Q∗(t0 + σ))+o(σ)B(0, 1),
(16)

whereσ−1o(σ) → 0 for σ → +0.

The following theorem is hold.

Theorem 4. [Filippova and Lisin, 2000]For everyz ∈
R

n such thatzi 6= 0 (i = 1, . . . , n) the following for-
mula is true:

hA2∗X0
(z) = min

{

max
l 6=0

1

ρ(l|X0)

n
∑

i=1

lizia
−1
i :

a ∈ A0, ai 6= 0, i = 1, . . . , n
}

.

Remark 1.[Filippova and Lisin, 2000] Let now the
setA2 be defined in (5) andX0 = E(0, Q0), then the
following formula is true

hA2∗E(0,Q0)(z) = ‖Q
− 1

2

0 z‖l1 .

The external ellipsoidal estimate of setσA2 ∗ X0 may
be found by applying the following theorem.



Theorem 5. [Matviychuk, 2016]For X0 = E(a0, Q0)
and allσ > 0 the following external estimate is true

σA2 ∗ X0 ⊆ E(a0, Q̃(σ)) + o(σ)B(0, 1), (17)

whereσ−1o(σ) → 0 for σ → +0,

Q̃(σ) = diag{(p−1 + 1)σ2(a0i )
2 + (p+ 1)r2(σ)},

a0 = {a0i }, r(σ) = σmax
z

‖z‖
(

‖Q
− 1

2

0 z‖l1
)−1

,

Here p is the unique positive root of the equation
∑n

i=1 1/p+ αi = n/p(p+ 1), whereαi ≥ 0 (i =
1, ..., n) being the roots of the following equation
∏n

i=1

(

σ2(a0i )
2 − αr2(σ)

)

= 0.

Then an external ellipsoidal estimate of the trajectory
tubeX (t) of the system (8) may be found by applying
the following new result.

Theorem 6. For the trajectory tubeX (t) of the sys-
tem (8) and for allσ > 0 the following inclusion holds

X (t0 + σ)⊆E(a+(σ), Q+(σ))+o(σ)B(0, 1), (18)

whereσ−1o(σ) → 0 for σ → +0,

a+(σ) = a∗(t0 + σ),

Q+(σ) = (p−1 + 1)Q̃(σ) + (p+ 1)Q∗(t0 + σ).

Herea∗(t0 +σ), Q∗(t0+σ), Q̃(σ) are defined in The-
orem 3, Theorem 5 andp is the unique positive root
of the equation

∑n
i=1 1/p+ αi = n/p(p+ 1), where

αi ≥ 0 (i = 1, ..., n) being the roots of the following
equation|Q̃(σ) − αQ∗(t0 + σ)| = 0.

Proof. From the Theorem 2 and formula (11) it fol-
lows that

X (t0 + σ) ⊆ (I + σ(A0 +A1)) ∗ X0+

+σA2 ∗ X0 + o(σ)B(0, 1),

whereσ−1o(σ) → 0 for σ → +0. From Theorem 3
and Theorem 5 we have estimates

(I + σ(A0 +A1)) ∗ X0 ⊆

⊆E(a∗(t0 + σ), Q∗(t0 + σ))+o(σ)B(0, 1),

σA2 ∗ X0 ⊆ E(0, Q̃(σ)) + o(σ)B(0, 1).

Apply the procedure of external ellipsoidal estimate
of sum of two ellipsoids given in [Chernousko, 1994;
Kurzhanski and Valyi, 1997] we obtain the result of the
Theorem 6.�
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Figure 1. Trajectory tubeX (t) and its ellipsoidal estimating tube

E(a+(t), Q+(t)) for the bilinear control system with uncertain

initial states.

The following algorithm is based on Theorem 6 and
may be used to produce the external ellipsoidal esti-
mates for the reachable sets of the system (8).

Algorithm 1. The time segment[t0, T ] is subdivided
into subsegments[ti, ti+1] whereti = t0 + iσ (i =
1, . . . ,m), σ = (T − t0)/m, tm = T .

• For givenX0 = E(a0, Q0) andA0 = B(0, 1) we
find the external estimateE(a+(σ), Q+(σ)) by Theo-
rem 6 such that

X (t1) = X (t0 + σ) ⊆ E(a+(σ), Q+(σ)).

• Consider the system on the next subsegment[t1, t2]
with E(a+(σ), Q+(σ)) as the initial ellipsoid at in-
stantt1.
The following steps repeat the previous iteration.

At the end of the process we will get the external es-
timate of the tubeX (·) of the system (8) with accuracy
tending to zero whenm → ∞.

The following example illustrates the Algorithm 1.
Example 1.Consider the following system

{

ẋ1 = a1x1 + x2,
ẋ2 = a2x2 + c(t)x1,

0 ≤ t ≤ 0.18,

wherex0 ∈ X0 = B(0, 1), c(t) is an unknown but
bounded measurable function with|c(t)| ≤ 1, the un-
certain bounded matrix functionA(t) ∈ A where

A=
{

A(t) : A(t) = diag{a1, a2},

a21 + a22 ≤ 1, t ∈ [0, 0.18]
}

.

The trajectory tubeX (t) and its external ellipsoidal es-
timateE(a+(t), Q+(t)) calculated by Algorithm 1 are
given in Figure 1.



4.2 Bilinear Impulsive Control System
Consider the bilinear impulsive control system (1)

with restrictions (2)–(6)

dx(t) = A(t)x(t)dt +B(t)du(t),

x(t0 − 0) = x0 ∈ X0 = E(a0, Q0), t ∈ [t0, T ]

A(t) ∈ A, u ∈ U .

Let us introduce a new time variable [Rishel, 1965]
η = η(t) and a new state coordinateτ = τ(η)

η(t) = t+

t
∫

t0

du(s), τ(η) = inf{t | η(t) ≥ η}.

Consider the following auxiliary equation

d

dη

(

z
τ

)

∈ H(τ, z), (19)

z(t0) = z0 ∈ X0 = E(a0, Q0),

τ(t0) = t0, t0 ≤ η ≤ T + µ,

H(τ, z) =
⋃

0≤ν≤1

{

(1− ν)

(

A(τ)z
1

)

+ν

(

B(τ)
0

)}

.

Denote byw = {z, τ} the extended state vector of the
system (19) and byW (η) = W (η; t0,X0 × {t0},A)
(t0 ≤ η ≤ T + µ) the reachable set of the system (19).

Theorem 7. The following inclusion holds forσ > 0

W (t0 + σ) ⊆ W (t0, σ) + o(σ)Bn+1(0, 1), (20)

lim
σ→+0

σ−1o(σ) = 0,

W (t0, σ) =
⋃

0≤ν≤1

W (t0, σ, ν),

W (t0, σ, ν)=

(

E
(

a+(t0, σ, ν), Q
+(t0, σ, ν)

)

t0 + σ(1 − ν)

)

,

a+(t0, σ, ν)=ã∗(σ, ν) + σνB(t0),

Q+(t0, σ, ν)=(q−1 + 1)σ2(1− ν)2Q̃(σ)+

+(q + 1)Q̃∗(σ, ν),

where Q̃(σ) is defined in Theorem 5 and functions
ã∗(σ, ν), Q̃∗(σ, ν) calculated asa∗(t), Q∗(t) in The-
orem 3 but when we replace matrixA0 in (13), (14)by
Ã0 = (1 − ν)A0. Hereq = q(σ, ν) is the unique posi-
tive root of the equation

∑n
i=1 1/q + λi = n/q(q + 1),

with λi = λi(σ, ν) ≥ 0 (i = 1, ..., n) being the roots
of the equation|σ2(1−ν)2Q̃(σ)− λQ̃∗(σ, ν)| = 0.

Proof. The above generalization is based on a combi-
nation of the techniques described above and the re-
sults of [Filippova and Matviychuk, 2011; Filippova
and Matviychuk, 2015].�

Remark 2. To find the estimate of the reachable set
W (t0 + σ) we introduce small parameterε > 0 and
embed the degenerate ellipsoidW (t0, σ, ν) in nonde-
generate ellipsoidE

(

wε(t0, σ, ν), Oε(t0, σ, ν)
)

:

W (t0, σ, ν) ⊆ E
(

wε(t0, σ, ν), Oε(t0, σ, ν)
)

,

wε(t0, σ, ν) =

(

a+(t0, σ, ν)
t0 + σ(1 − ν)

)

,

Oε(t0, σ, ν) =

(

Q+(t0, σ, ν) 0
0 ε2

)

.

Thus, for all smallε > 0 we get

W (t0 + σ) ⊆ W (t0, σ) ⊆ Wε(t0, σ),

Wε(t0, σ) =
⋃

0≤ν≤1

E
(

wε(t0, σ, ν), Oε(t0, σ, ν)
)

and lim
ε→+0

h(W (t0, σ),Wε(t0, σ)) = 0. The passage to

the family of nondegenerate ellipsoids enables one to
use the algorithms of [Vzdornova and Filippova, 2006]
and construct an external estimate of the union of the
ellipsoidsWε(t0, σ) ⊂ Eε(w

+(σ), O+(σ)).

The following lemma explains the reason of construc-
tion of the auxiliary differential inclusion (19).

Lemma 1. [Filippova and Matviychuk, 2011]The set
X (T ) = X (T, t0,X0) is the projection ofW (T + µ)
at the subspace of variablesz: X (T ) = πzW (T + µ).

The next iterative algorithm based on Theorem 7.

Algorithm 2. The time segment[t0, T + µ] is sub-
divided into subsegments[ti, ti+1] whereti = t0 + iσ
(i = 1, . . . ,m), σ = (T+µ−t0)/m, tm = T+µ. Sub-
divide the segment[0, 1] into subsegments[νj , νj+1]
where νj = jh∗, h∗ = 1/k, ν0 = 0, νk = 1
(j = 1, . . . , k).

• For the givenX0 = E(a0, Q0) define by Theorem 7
setsW (σ, νj) (j = 0, . . . , k).

• Fix the small parameterε > 0 and find ellip-
soidEε(w1(σ), O1(σ)) in R

n+1 such thatW (σ, νj) ⊆
Eε(w1(σ), O1(σ)) (j = 0, . . . , k). At this step we
find the ellipsoidal estimate for the union of a finite
family of ellipsoids [Filippova and Matviychuk, 2011;
Matviychuk, 2012].
• Find the projection of E(a1, Q1) =
πzEε(w1(σ), O1(σ)) by Lemma 1.

• Consider the system on the next subsegment[t1, t2]
with E(a1, Q1) as the initial ellipsoid at instantt1.

The following steps are repeated previous iteration.

At the end of the process we will get the external esti-
mateE(a+(T ), Q+(T )) of the reachable setsX (T ) of
the impulsive control systems (1) with uncertain matrix
of the system and uncertain initial state basing on the
special structure of the dataA, U andX0.



5 Conclusion
The problem of state estimation of the reachable sets

for uncertain impulsive control systems for which we
assume that the initial state is unknown but bounded
with given constraints and the matrix in the linear part
of state velocities is also unknown but bounded is con-
sidered here.
The modified state estimation approach which uses

the special constraints on the controls and uncertainty
and allows to construct the external ellipsoidal esti-
mates of reachable sets is presented. This method is
based on results of ellipsoidal calculus developed ear-
lier for some classes of uncertain systems.
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