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Abstract: This paper deals with the problem of decomposition and precise control of complex objects.  
Decomposition is based on concepts of an object technical controllability and model reference adaptive 
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1. INTRODUCTION 

The theory for precise control of complex Lagrangian sys-
tems was presented in Zemlyakov and Glumov (2007); Zem-
lyakov and Krivoruchko (2007). This investigation demon-
strated good results but these results were obtained under 
some restrictions. Restrictions have to be put on every con-
crete object under consideration. In this paper, we try to en-
sure some of these restrictions for an object of a space pur-
pose. 

As a complex, we assume an object with some interconnected 
subsystems (Šiljak, 1991; Zemlyakov and Krivoruchko, 
2007). A mathematical model (MM) of such an object is usu-
ally a multi-connected nonlinear and non-stationary one. Syn-
thesis of control algorithms for such an object is not a simple 
problem. The situation appears more difficult for the case of  
precise control.  

Qualitatively, under precise control we mean the situation 
when the motion of any subsystem and the system in the 
whole coincide with the prescribed motions within the pre-
scribed accuracies.  

The usual method for such an object control is decomposition 
(Šiljak, 1991). In this paper, we assume that an object in the 
whole could be represented as a set of interconnected subsys-
tems. For each subsystem a component of interconnections is 
selected and compensated on the base of adaptive or optimal 
control (Zemlyakov and Krivoruchko, 2007). For this goal 
we use two approaches to the decomposition. The first one is 
based on the decomposition of an object MM. In this case, 
the object has to satisfy the condition of technical controlla-
bility (Rutkovsky and Zemlyakov, 2003). The second ap-
proach is based on the decomposition of a system control 
MM. In this case, special adaptive control algorithms are 
derived (Zemlyakov and Krivoruchko, 2007). A space robotic 
module (SRM) (Glumov et al., 2006) is taken as an example 
for a space purpose object.  

2. MODEL OF A SPACE ROBOTIC MODULE 

SRM is intended for a large space stations service. It consists 
of a supporting body and one or some manipulators. Let our 
SRM have only one manipulator with m links. In an inertial 
space the SRM position in common case is determined by  

)1(6 += mN  coordinates, but connections which are imposed 
on the relative positions of ( 1)m +  bodies reduce this number 
to a value Nn ≤ . 

For the SRM object we assume that the supporting body posi-
tion is determined by six coordinates jq  and the position of 
each link is determined by the coordinates iq +6    that shows 
the position of a link with respect to the preceding link. Let 
us consider these coordinates as the generalized ones 

( )n
T qqqq ,...,, 21= , where mn += 6  is a maximum number of 

generalized coordinates, T is the transposition sign. In turn, 
the number n can be decreased by superposing  additional 
connections. 

As the generalized coordinates of the supporting body, we 
consider the Euler angles ( )32100 ,, qqqqT =  and coordinates of 
the supporting body pole in an inertial coordinate system 

=T
tq0 ( )654 ,, qqq . The mechanical system MM will be derived 

on the base of Lagrange’s equation 
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where ),( qqTT =  is the kinetic energy of the system in the 
whole and Q  is the vector of generalized forces.  

For purposes of simplification let us assume that the system 
potential energy is missing. It is correct for SRM which 
serves as an orbital station in weightlessness conditions. 

Let us assume that the mechanical system position is con-
trolled by a control vector ( )n

T MMMM ,...,, 21= . 



 

The MM is necessary for the goal of its control so it is more 
reasonable to present (1) in the following form 
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where the matrix )(qS  is determined by the equation 
MqSQ )(= . 

In (Glumov et al., 2006) it was shown that the MM could be 
presented as  
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In (4) the matrices , , ,B C Z L  are determined by the SRM 
concrete constructive parameters.  

As an example, we will take an SRM kinematic scheme of a 
simple structure: a carrying body and a manipulator with one 
link. An object moves in a space with the inertial coordinate 
system. The carrying body has the main central coordinate 
system 1 2 3

0 0 0 0O x x x . A manipulator is hinged to the carrying 
body at the point 1 2 3( , , )m m inx x x . The manipulator has only one 
link. The link has the frame system 1 2 3

1 1 1 1O x x x  and the rota-
tional degree of freedom relative to the 1

1 1O x  axis. The  mo-
ments of inertia for the carrying body are relatively 150, 120, 
100 2kgm ; the mass is 300 kg. The length and the mass of the 
link are relatively 1 m and 1 kg. The coordinates for the link 
center of mass are (0, 0.8, 0) . As generalized coordinates, 
we take the Euler angles: 1q – the nutation, 2q – the preces-
sion, 3q – the roll in the whole angles, 4 5 6, ,q q q  are the coor-
dinates of the point  0O  in the inertial system relative to the 
axis 1 2 3, ,in in in in in inO x O x O x . The angle position of the link rela-
tive to the carrying body is determined by the coordinate 7q . 

Using formulas (4) and the their realization in the Maple sys-
tem (Glumov et al., 2006), we derive the following matrices 
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in symbolic–numerical forms. For each numerical vector q  
these matrices take also numerical forms. So we consider that 
object MM (3) is in our disposal with the known symbolic – 
numerical matrices. 

Let the control vector ( ) ( 1, 7)iM M i= =  consist of seven 
components: the first three 1 2 3, ,M M M  are the moments that 
act on the carrying body relative to the axes 

1 2 3
0 0 0 0 0 0, ,O x O x O x ; 4 5 6, ,M M M  are the forces that act relative 

to the same axis; 7M  is the moment that acts to change the 
angle position of the manipulator link. 
 

3. THE PROBLEM STATEMENT  

Let for every generalized coordinate ( 1, 7)iq i =  there exist a 
desired function ( )ref

iq t  and the differential equation 

        ( )ref
i i i i i i iq d q k q k q t+ + = ,                                     (5) 

where the functions  ( )ref
iq t  and numbers ,i id k  are prescribed 

in advance; ( ) ,ref
i iq t w≤  const 0iw = > . 

It is necessary to derive a control law ( )M M t=  that guaran-
tees the motion for every generalized coordinate ( 1, 7)iq i =  
with respect to Eq. (5). 

To solve analytical problems we will simplify some condi-
tions for a solution. We propose that: 

• non-inertial measuring devices make possible to get vec-
tors ( ), ( )q q t q q t= = ; 

• non-inertial acting devices make possible to get  
 
                    ( ) ( )M t U t= ,                                      (6)  

 
where ( )U t is a vector that is realized by a controller; 
• efficient computer is used in a controller to solve relatively 

complex algebraic terms. 
 

4. THE OBJECT DECOMPOSITION ON THE BASE OF 
“PHYSICAL” PRINCIPLE   

The MM (3) can be presented as a system of two subsystems 
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5. CONTROL OF THE CARRYING BODY MOTION 

 
Here we will take into consideration MM (7) which we re-
write in the following form 

       0 0 0 0( ) (*)q R q U f= + ,                                 (9) 

where 0 0( ) ( ( )) ( , 1, 6)ijR q r q i j= =  and  
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For this subsystem we use an adaptive suboptimal relay con-
trol (Rutkovsky and Zemlyakov, 2003). 

 
 



 

5.1. Conditions of the technical controllability  
 

Definition 1 (Rutkovsky and Zemlyakov, 2003).  The system 
that consists of the object with MM (7) or (9) and a controller  
with a control algorithm  0 0 ( , , )U U t q q=  will be named as a 
technically controllable one with respect to requirement (5) if 
this requirement is fulfilled during the system operation. 

Statement 1 (Rutkovsky and Zemlyakov, 2003). Necessary 
conditions for the technical controllability of the object with 
MM (9) are as follows: 

1)             0 ( ) 0 ( 1, 6)iir q i> = ,                                    (11) 

2) the matrix 0 ( )R q  has to be belong to the class of matrices 
with diagonal domination, that is, 
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It is easy to check that for the SRM with constructive pa-
rameters under consideration the necessary conditions do not 
take place.   

 
5.2. The technical controllability of  the SRM 

 
Let us take the control algorithm 0 0 ( , , )U U t q q=  in the form 

1 *
0 11 0( , , ) ( ) ( , , )U t q q S q U t q q−= .                            (13) 

It is possible if the matrix 11( )S q is not singular. Then Eq. (9) 
is rewritten in the following form 

                     * *
0 0 0 0( ) (*)q R q U f= +                           (14) 

where * 1
0 11( ) ( )R q A q−= . 

It is easy to check that for the SRM with constructive pa-
rameters under consideration and MM in form (14) the neces-
sary conditions take place for 

        0 0 0 0 0 0
1 2 320 160 ; 1 1 ; 1 1q q q< < − < < − < < .               (15) 

Let us take the control algorithm * *
0 0( , , ) ( ( , , ))iU t q q u t q q=  

( 1, 6)i =  in the relay form  

        * *
0 0( , , ) ( ( , , ))i i iu t q q U sign u t q q=                         (16) 

where * const 0iU = > . In (Rutkovsky and Zemlyakov, 2003) it 
is shown that for such a case  the MM (14) can be decom-
posed to a system of nonstationary equations  

      0( ) ( ( , , ))i i iq t sign u t q qρ=                          (17) 

where   

         max max( ) , , const 0.min min
i i i i itρ ρ ρ ρ ρ≥ ≥ = >                (18) 

In (Rutkovsky and Zemlyakov, 2003) it is shown that for 
every equation in (17) there exists an adaptive suboptimal 
control in the form 
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where ( ) ( )ref
i i iq t q tε = − . 

 
6. THE MODEL REFERENCE ADAPTIVE CONTROL 

 
From the MM (8) it is evident that a programmed computer 
aided adaptive control can be presented in the following form 

        7 22 7 7 7 7 7( , , ) ( )[ ( ) ]ref
i iu t q q A q k q q d q L= − − + .                (20) 

Equation (8) together with (20) can be represented by the 
equation 

      7 7 7 7 7 7 7 7( ) [ (*) ]refq d q k q k q t f L+ + = + + .                      (21) 

From Eq. (21) it is evident that if the equality  

7[ (*) ] 0f L+ ≡                               (22) 

is valid then the problem for the generalized coordinate 7q is 
solved. To solve equality (22) we use the principle of model 
reference adaptive control (Petrov et al., 1980). Let us take a 
reference model in the form 

7 7 7 7 ( )ref
m i m i m iq d q k q k q t+ + = .                        (23) 

From (21) and (23) we receive an equation with respect to the 
error 7 7 7mq qε = −   in the form 

7 7 7 7 7 7[ (*) ]d k f Lε ε ε+ + = + .                       (24) 

Equation (24) can be rewritten in a matrix form  

7 ( ), ( )x A x y y tρ ψ µ= + = +                             (25) 

where 7 1,xε =  7 2 ,xε =  7 (*)f L y+ = , 7 (*) ( ),f tµ=   L ψ= , 

1 2( ),Tx x x=  ( ) (0 )T y yρ =   and  matrix 

7
7 7

0 1
A

k d
 

=  − − 
. 

Now we can choose an algorithm for L  purposeful variation 
from the condition of an asymptotical convergence of system 
(25) with respect to the movement 

          0, 0.x y≡ ≡                                    (26) 

For this purpose, we take Lyapunov’s function in the form 

                    2( , ) TV x y x P x yκ= +    

where P is a positive definite matrix, const 0κ = > . The de-
rivative of  ( , )V x y  with respect to time taking into account 
system (25) is determined by the equality 

   ( , ) 2 [ ( ) ]TV x y x Q x y tκ σ µ ψ= + + +                    (28) 

where Q is the prescribed negative definite matrix, 
21 1 22 2( ), jkp x p x pσ = +  are elements of the matrix 

( ) ( , 1,2)jkP p j k= = .  



 

0 10 20 30 40 50 60 70 80 90 100

-6

-4

-2

0

2

4

6

x 10-3

0 10 20 30 40 50 60 70 80 90 100

-0.02

-0.01

0

0.01

0.02

0 10 20 30 40 50 60 70 80 90 100
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

 
Fig. 1. 

 
 

In this paper, we suppose that the sign of the coordinate iy  is 
known. Then we choose the desired algorithm in the form 
(27)  

                      ( )k sign yψ σ= − −                       (29) 

where 0k >  and     

                                    ( )k tµ> .                                  (30) 

Then we have inequalities 

                 ( , ) 0,V x y > ( , ) 0V x y <                   (31) 

which ensure the solution of the problem. 

 
7. THE SIMULATION RESULTS 

 
Let for the SRM under consideration the prescribed functions 
be the following: 1 1 1( ) 0.7 sin( );refq t A tω= −  

( ) sin( ) ( 2,7)ref
i i iq t A t iω= = , 1 2 30, 4; 0,02;A A A= = =  

4 0,006;A =  5 0,005;A =  6 0,003A = ; 7 0,5A = ;   
1 1

2 30,25 ; 0,35 ;s sω ω− −= =  1
1 0,01 ;sω −=  1

4 0, 2 ;sω −=  
1

5 7 0,1 ;sω ω −= =  1
6 0,075sω −= . It is necessary to reproduce 

these motions by the generalized coordinates with the precise 
accuracy that is determined by  (5) with the coefficients 

25; 7 ( 1, 6)i ik d i= = = ; 7 0, 25;k =  7 0,7d = . 

The matrix Q in (28) we choose as 0,05 0
0 0,05

Q
− 

=  − 
.  

Due to (28) the matrix P  in (27) is 0,12 0.1
0.1 0,18

P  
=  
 

.  

For simulation in algorithm (29) was taken 1k = . In equali-
ties (16) we have * * *

1 2 31,5; 1,81; 1,71;U U U= = =  
* * *
4 5 6 82U U U= = = . In algorithms (19) we have 

min min min
1 2 3
min min min
4 5 6

0,005;

0,1 .

ρ ρ ρ

ρ ρ ρ

= = =

= = =
 

 
Fig. 1 presents the functions ( ) ( 1, 7)ref

iq t i =  and relative coor-
dinates ( ) ( 1, 7)iq t i =  of the SRM motion. From Fig. 1 it is 
clear that the problem that was formulated in this paper is 
solved. 
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