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Abstract
We study phase transitions in mixed populations of in-

teracting active and inactive oscillators on complex net-
works. As the ratio of inactive oscillators to the total
population increases, the macroscopic oscillatory ac-
tivity of the whole network decreases and eventually
stops at a critical ratio. This phase transition, called an
aging transition in [Daido and Nakanishi, 2004], has
been studied with simple networks so far. To extend
the conventional framework, we analyze aging transi-
tions in complex networks including random and scale-
free networks. The critical ratio is theoretically de-
rived through appropriate approximations and numer-
ically verified.
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1 Introduction
Complex networks have been intensively studied for

this decade, because a diverse range of real networks
possess non-regular structures [Strogatz, 2001]. Sta-
tistical mechanics of complex networks have been ex-
plored with data analyses of social, communication, bi-
ological, computer, and power networks [Albert and
Barab́asi, 2002; Newman, 2003; Boccalettiet al.,
2006]. Complex network theory is not only useful for
understanding the mechanism of structures in real net-
works but also significant for designing robust and re-
silient networks [Vespignani, 2010].
One of the major topics in complex newtork theory

is robustness and fragility against failures and attacks
[Albert et al., 2000; Callawayet al., 2000; Motter and
Lai, 2002]. A breakdown of a whole network can be
caused by cascading failure, which is often responsible
for blackouts and computer system failures. Even if the
initial failure serving as a trigger of cascading failure is
the same level, the damage of the whole network can be

different depending on network topology. For example,
it has been known that a scale-free network is unexpect-
edly robust against random failures but extremely vul-
nerable to targeted failures, or attacks to hubs with high
degrees. These two aspects of robustness and fragility
can be caused by the difference in the change of aver-
age path length after removal of nodes. Many efforts
have been made to elucidate a general property of cas-
cading failure in the framework of percolation theory
[Callaway et al., 2000; Newmanet al., 2001; Costa,
2004; Buldyrevet al., 2010]. In these models, some
damaged nodes are initially removed from a network
and other nodes are sequentially removed as a result of
cascading failure. The size of the giant component (the
largest set of connected nodes) which finally remains
is regarded as a macroscopic quantity representing a
degree of network functionality. As the fraction of ini-
tially removed nodes increases, a phase transition oc-
curs and the giant component vanishes. However, this
framework is not applicable to understanding robust-
ness of networks composed of dynamical units.
For getting insights into robustness of biological

systems consisting of dynamical elements [Barabási,
2004], we analyze complex networks composed of cou-
pled oscillators in another framework. The tolerance of
a network against inactivation of oscillators is exam-
ined. As the ratio of inactivated oscillators increases,
the global oscillations are diminished. When the ra-
tio increases beyond a certain critical value, the global
oscillations terminate. This phase transition is called
an aging transition [Daido and Nakanishi, 2004]. The
critical ratio can be regarded as an index of robust-
ness of the network: the higher the critical ratio is, the
more robust the network is. So far, aging transitions
have been investigated with simple network topologies
[Daido and Nakanishi, 2004; Daido and Nakanishi,
2007; Paźo and Montbrío, 2006; Daido, 2008; Tanaka
et al., 2010; Morinoet al.].
We explore aging transitions in complex networks of

active and inactive oscillators. First, we analytically
derive the condition for aging transitions in random



networks by using system reduction technique. We
clarify that the link density as well as the coupling
strength play important roles for the phase transition.
Second, we analyze aging transitions in scale-free net-
works by using approximations with degree-weighted
mean fields. The analytical results are verified by nu-
merical simulations.

2 Model
We study a network ofN coupled oscillators as fol-

lows:

żj = fj(zj) +
K

N

N∑
k=1

Ajk(zk − zj), (1)

wherezj is the complex state variable of thejth oscil-
lator,fj(zj) ≡ (αj + iΩ − |zj |2)zj , K is the coupling
strength, andA = (Ajk) is the adjacency matrix where
Ajk = 1 if the jth andkth oscillators are connected
while Ajk = 0 otherwise. This symmetric matrix de-
termines the network topology, which is simple in the
previous studies but complex in our study. The degree
of thejth node is indicated bykj =

∑N
k=1 Ajk.

The single oscillator without coupling (i.e.K = 0) is
represented by Stuart-Landau equation:ż = (α+ iΩ−
|z|2)z, which is a simple system describing the dynam-
ics near a Hopf bifurcation atα = 0. It shows self-
oscillatory behavior with amplitude

√
α and frequency

Ω for α > 0, while non-oscillatory behavior after tran-
sient damping oscillations forα < 0. We suppose that
some active oscillators are randomly inactivated with
ratiop. The set of the inactivated oscillators is denoted
by SI and that of others bySA. We setαj = −b < 0
for j ∈ SI andαj = a > 0 for j ∈ SA, wherea = 1
andb = 3 throughout this article.
The macroscopic oscillations of the whole network

is evaluated by the order parameter|Z| whereZ =
(1/N)

∑N
j=1 zj . As the ratio of inactive oscillatorsp

increases from zero, the order parameter suddenly falls
below a very small threshold value at a critical point
pc due to an aging transition. The threshold is fixed at
10−6. Numerical integrations were performed by the
fourth-order Runge-Kutta method with time step 0.1.

3 Results
3.1 Random networks
We first consider a random network where the degrees

are distributed around the mean degree and the variance
of the degree distribution is relatively small. In such
networks, the oscillations in each subpopulation of ac-
tive and inactive oscillators are almost synchronized
for a sufficiently large coupling strength. Figure 1
shows that the amplitudes of the oscillators are nearly
the same in each group and seem to be independent of
the degrees in an Erdős-Ŕenyi random network [Erd̋os
and Ŕenyi, 1960]. Using this property, we perform sys-
tem reduction and thereby theoretically derive the con-
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Figure 1. The degrees (a) and the amplitudes (b) of the oscillators

in a random network withN = 1000, 〈k〉 = 80, K = 30,

andp = 0.4. The vertical line separates inactive (left) and active

(right) oscillators. The degrees are sorted in decending order within

each group.

dition for an aging transition. We introduce the link
densityd, which is the proportion of the total number
of links to the possible maximum number of links, i.e.
d = N〈k〉/N(N − 1), where〈k〉 = (1/N)

∑N
j=1 kj is

the mean degree. The link density can be approximated
asd ≅ 〈k〉/N for a sufficiently large number ofN .
Then, the number of active oscillators in the neighbors
of each oscillator is expected to be(1 − p)〈k〉 and that
of inactive oscillators to bep〈k〉. By settingzj = A for
all active oscillators andzj = I for all inactive oscilla-
tors, we obtain

Ȧ = (a − Kpd + iΩ − |A|2)A + KpdI, (2)

İ = (−b − Kqd + iΩ − |I|2)I + KqdA, (3)

whereq ≡ 1 − p.
In the limit ofN → ∞, the ratiop can be regarded as a

real number between 0 and 1. Since an aging transition
occurs when the trivial equilibrium pointA = I = 0
is stabilized asp is increased from 0, a linear stability
analysis yields

pc =
a(Kd + b)
(a + b)Kd

. (4)

Figure 2 shows that the theoretical result is in good
agreement with the numerical result, although it is in-
fluenced by the configuration of a random network for
p close to 1. The aging transition points obtained by nu-
merical simulations (the circle with the error bar) and
analytical form (4) are plotted in the(K, p)-plane. As
K goes to the infinity, the critical ratiopc converges to
a/(a + b) as in the globally coupled network [Daido
and Nakanishi, 2004]. From the condition thatpc = 1,
the critical coupling strength is obtained asKc = a/d
with d fixed, below which an aging transition does not
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Figure 2. The aging transition points in the Erdős-Ŕenyi random

networks withN = 1000 and〈k〉 = 80 (i.e. d = 0.08).

The circle with the error bar indicates the numerical result for 10

network realizations. The dashed line indicates the theoretical result

given by Eq. (4). The critical coupling strength above which an aging

transition occurs is given byKc = a/d = 12.5.

take place untilp = 1. A similar diagram can be de-
picted in the(d, p)-plane whenK is fixed. The critical
density is given asdc = a/K, below which an aging
transition does not occur. In the case ofd = 1, the
network corresponds to the globally coupled one and
Eq. (4) is reduced to the result derived in the previous
study [Daido and Nakanishi, 2004].

In random networks, it is feasible to assume that the
oscillators in each subpopulation of active and inactive
elements are synchronized. Since they are regarded as
identical oscillators in each group, the system reduc-
tion based on this assumption is successful. A similar
analysis is possible for a network where the degree dis-
tribution is relatively homogeneous, e.g. small-world
networks. For such networks, the robustness is depen-
dent on the link density as well as the coupling strength.

3.2 Scale-free networks
In contrast to random networks, the degree distribu-

tion of a scale-free network is highly heterogeneous. A
scale-free network is composed of a small number of
nodes with many degrees and a large number of nodes
with few degrees. This network heterogeneity largely
influences the oscillatory dynamics and the aging tran-
sition. As shown in Fig. 3, the amplitudes of oscilla-
tions depend on the degree of oscillators. Therefore,
the system reduction technique in the previous subsec-
tion is not valid for scale-free networks.

We consider mean fields for each subpopulation of ac-
tive and inactive oscillators, because active and inactive
oscillators behave differently even if the degree is the
same. We use a degree-weighted mean field approxi-
mation for system reduction, which was employed for
analysis of scale-free networks of oscillators [Nakao
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Figure 3. The degrees (a) and the amplitudes (b) of the oscillators

in a scale-free network withN = 1000, 〈k〉 = 80, K = 30,

andp = 0.5. The vertical line separates inactive (left) and active

(right) oscillators. The degrees are sorted in descending order within

each group.

and Mikhailov, 2009]. Considering the local field:

hj =
N∑

k=1

Ajkzk, (5)

Eq. (1) is rewritten as follows:

żj = fj(zj) +
K

N
(hj − kjzj). (6)

For a sufficiently large number ofN , the number of
active oscillators in the neighbors of thejth oscillator
is expected to be(1 − p)kj and that of inactive oscil-
lators to bepkj . Here we introduce degree-weighted
mean fields for active and inactive subpopulations, re-
spectively, as follows:

HA(t) =

∑
j∈SA

kjzj(t)∑
j∈SA

kj
, (7)

HI(t) =

∑
j∈SI

kjzj(t)∑
j∈SI

kj
. (8)

We assume that the local field is approximated by us-
ing the degree-weighted mean fields as follows:

hj(t) ≅ (1 − p)kjHA(t) + pkjHI(t). (9)

With this assumption, the oscillators with the same de-
gree are viewed as identical ones and Eq. (6) is rewrit-
ten as follows:

żj = fj(zj) +
Kkj

N
((1 − p)HA(t) + pHI(t) − zj).

(10)



From numerical simulation of the coupled system, we
notice that all the oscillators exhibit phase synchro-
nization of oscillations with frequencyΩ. Thus, we
suppose that the state variables are written aszj(t) =
rj(t) exp(i(Ωt + θ)), whererj is the amplitude andθ
is the phase delay. Then, the mean fields for the two
subpopulations are respectively described as follows:

HA(t) = RA(t)ei(Ωt+θ), (11)

HI(t) = RI(t)ei(Ωt+θ), (12)

where

RA =

∑
j∈SA

kjrj∑
j∈SA

kj
, (13)

RI =

∑
j∈SI

kjrj∑
j∈SI

kj
. (14)

By substituting Eqs. (11)-(12) into Eq. (10), we obtain
the following evolution equation:

ṙj = (αj −
Kkj

N
− r2

j )rj

+
Kkj

N
((1 − p)RA + pRI). (15)

OnceRA andRI are given, the amplitude of the oscil-
lations in a stationary state is obtained asr∗j (RA, RI)
from Eq. (15). The self-consistency of the mean
field approximation requires that the mean fields in
Eqs. (13)-(14) calculated from these stationary am-
plitudes are consistent with the originally given ones.
Namely, it follows that

RA = GA(RA, RI) ≡
∑

j∈SA
kjr

∗
j (RA, RI)∑

j∈SA
kj

, (16)

RI = GI(RA, RI) ≡
∑

j∈SI
kjr

∗
j (RA, RI)∑

j∈SI
kj

. (17)

There exists a stable solution withRA, RI > 0 before
the aging transition, while the originRA = RI = 0 is
stable after the aging transition. Therefore, the change
of the stability of the origin corresponds to the critical
transition point. The condition can be discussed by the
eigenvalues of the linearized matrix at the origin, de-
scribed as follows:

J0 =

[
∂GA(RA,RI)

∂RA

∂GA(RA,RI)
∂RI

∂GI(RA,RI)
∂RA

∂GI(RA,RI)
∂RI

]∣∣∣∣∣
RA=RI=0

(18)

Now let us calculate the components ofJ0. First we
derive ∂r∗j /∂RA and ∂r∗j /∂RI at RA = RI = 0.

From Eq. (15), the stationary state before an aging tran-
sition is a positive real solution of the following cubic
equation:

r3
j − βjrj − δj = 0, (19)

where

βj = αj − Kkj/N, (20)

δj =
Kkj

N
((1 − p)RA + pRI). (21)

It should be noted thatβj depends on the oscillator type
(active or inactive) and the degree of thejth node. It is
obvious thatδj > 0 for RA, RI > 0 because0 < p <
1. The number of real solutions of the cubic equation
is different according to the sign ofβj . Therefore, we
separately consider the cases ofβj < 0, βj = 0, and
βj < 0.
If βj < 0, then the cubic equation has only one real

root because the discriminantD = 4β3
j − 27δ2

j is neg-
ative. The real root is described as follows:

r∗j = (X + Y )1/3 − (Y − X)1/3, (22)

where

X =
δj

2
, (23)

Y =

√(
δj

2

)2

−
(

βj

3

)3

. (24)

SinceX < Y , δj = 2X = (X + Y ) − (Y − X) > 0.
Hence,(X +Y )1/3 > (Y −X)1/3 and therebyr∗j > 0.
A linear stability analysis shows that this positive solu-
tion is stable. By differentiating Eq. (21) and Eq. (22),
we obtain the following derivatives:

∂r∗j
∂RA

∣∣∣∣
RA=RI=0

=
∂r∗j
∂δj

∣∣∣∣
δj=0

· ∂δj

∂RA

∣∣∣∣
RA=RI=0

= − 1
βj

· (1 − p)Kkj

N
, (25)

∂r∗j
∂RI

∣∣∣∣
RA=RI=0

=
∂r∗j
∂δj

∣∣∣∣
δj=0

· ∂δj

∂RI

∣∣∣∣
RA=RI=0

= − 1
βj

· pKkj

N
. (26)

If βj = 0, then the cubic equation has only one posi-
tive real root represented as follows:

r∗j = δ
1/3
j . (27)



However, the derivatives∂r∗j /∂RA and∂r∗j /∂RI di-
verge in the limit ofRA, RI → 0. Therefore, the mean
field approximation does not work in this case.
If βj > 0, the cubic equation has three real roots for

δj close to 0 because the discriminantD = 4β3
j −27δ2

j

is positive. The roots are described as follows:

r∗j = ωm(X + iY ′)1/3 + ω3−m(X − iY ′)1/3

(m = 0, 1, 2), (28)

whereY ′ = iY is a positive real value andω = e2πi/3.
By introducingeiΘ ≡ (X + iY ′)/

√
X2 + Y ′2, they

are calculated asr∗j = 2
√

βj/3 cos((Θ + 2mπ)/3)
(m = 0, 1, 2). In the limit of RA, RI → 0 (δj → 0),
the three roots approach2

√
βj/3 cos(π/6 + 2mπ/3)

(m = 0, 1, 2), respectively. The only positive root
given by the above root withm = 2, corresponding to
the stationary amplitude, remains positive even if the
given mean fields vanish. Hence, the self-consistency
of the mean field approximation conflicts with the pre-
sumption that an aging transition occurs at a ratiop in
the range of0 < p < 1.
Form above discussions, we assumeβj < 0 for all

j in what follows so that the mean field approxima-
tion works well. This assumption is satisfied if the
minimum degree of the active oscillator populations is
larger thanaN/K. From Eq. (16) and Eqs. (25)-(26),
the (1,1)th entry of the linearized matrixJ0 is obtained
as follows:

∂GA

∂RA

∣∣∣∣
RA=RI=0

=
1∑

j∈SA
kj

 ∑
j∈SA

kj

∂r∗j
∂RA

∣∣∣∣
RA=RI=0


=

(1 − p)K∑
j∈SA

kj

 1
N

∑
j∈SA

k2
j

Kkj/N − αj

 . (29)

The configuration of the active and inactive oscilla-
tors is determined independently of the degree distri-
bution. Therefore, the total number of links owned by
active oscillators can be approximated as

∑
j∈SA

kj ≅
(1 − p)N〈k〉 by using the mean degree〈k〉 of the
whole network. WhenN is sufficiently large, using
the link densityd ≅ 〈k〉/N , it is further approximated
as

∑
j∈SA

kj ≅ (1 − p)dN2. Thus, the derivative in
Eq. (29) can be approximated as follows:

∂GA

∂RA

∣∣∣∣
RA=RI=0

≅ 1
d

 1
N

∑
j∈SA

d2
j

dj − αj/K

 ,(30)

wheredj = kj/N is the normalized degree. Note that
the average of the normalized degrees is equivalent to
the link density in the limit ofN → ∞. Similarly, we

can approximate all the other entries of the linearized
matrix J0. For simplicity of description, we define the
following function:

F (K,α) =
1
N

N∑
j=1

d2
j

dj − α/K
, (31)

which is independent of the ratiop. WhenN is suffi-
ciently large, the following approximations hold:

1
N

∑
j∈SA

d2
j

dj − αj/K
≅ (1 − p)F (K, a), (32)

1
N

∑
j∈SI

d2
j

dj − αj/K
≅ pF (K,−b). (33)

Substitution of the above equations into Eq. (30) and
into the corresponding equations for the other compo-
nents yields

J0 =

[
(1−p)F (K,a)

d
pF (K,a)

d
(1−p)F (K,−b)

d
pF (K,−b)

d

]
. (34)

The characteristic equation of this matrix is given by

χ(λ) = λ2 −
(

(1 − p)F (K, a)
d

+
pF (K,−b)

d

)
λ.

The condition that the solution atRA = RI = 0 loses
its stability is given byχ(1) = 0. By solving this equa-
tion with respect top, we finally get the critical ratio as
follows:

pc =
F (K, a) − d

F (K, a) − F (K,−b)
. (35)

To verify the theoretical result, we generate a trun-
cated scale-free network by the preferential attachment
rule [Barab́asi and Albert, 1999; Albert and Barabási,
2002], where the minimum degree is nearly a half of
the mean degree. Figure 4 shows a phase diagram
in the (K, p)-plane, where the aging transition points
obtained by numerical simulations and the aging tran-
sition curve represented by the analytical form (35)
are plotted. The theoretical result is in good agree-
ment with the numerical result. The critical coupling
strength is given asKc ∼ aN/kmin wherekmin =
minjkj, below whichpc = 1. WhenK approaches
Kc from above,F (K, a) becomes large enough to ne-
glect the other terms in Eq. (35) and accordinglypc

approaches 1.
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Figure 4. The aging transition points in the Barabási-Albert scale-

free networks withN = 1000 and〈k〉 = 80 (i.e. d = 0.08).

The circle with the error bar indicates the numerical result for 10

network realizations. The dashed line indicates the theoretical result

given by Eq. (35).

4 Conclusions
We have studied phase transitions in mixed popula-

tions of active and inactive oscillators on complex net-
works. As the ratio of inactive oscillators increases,
the order parameter indicating the global activity of the
whole network decreases. A phase transition occurs
at a critical ratio when the order parameter vanishes.
We have theoretically derived the critical ratio using
system reduction. For random networks, by regarding
the oscillators to be identical in each subpopulation, we
have obtained the reduced model which well explains
the phase transition. The result has shown that the link
density as well as the coupling strength play important
roles for the transition. For scale-free networks, the
degree-weighted mean fields work very well to approx-
imate the phase transition curve. Currently the scaling
property near the transition point is under investigation.
The approximation methods that we have introduced
would be useful to understand phase transitions, syn-
chronization, and collective behavior in complex net-
works of coupled oscillators.
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Paźo, D. and Montbrío, E. (2006). Universal behav-
ior in populations composed of excitable and self-
oscillatory elements.Phys. Rev. E. 73, 055202(R).

Strogatz, S. (2001). Exploring complex networks.Na-
ture. 410, pp. 268–276.

Tanaka, G., Okada, Y. and Aihara, K. (2010). Phase
transitions in mixed populations composed of two
types of self-oscillatory elements with different pe-
riods.Phys. Rev. E. 82, 035202(R).

Vespignani, A. (2010). Complex networks: The
fragility of interdependency.Nature. 464, pp. 984–
985.


