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Abstract different depending on network topology. For example,

We study phase transitions in mixed populations of in- it has been known that a scale-free network is unexpect-
teracting active and inactive oscillators on complex net- edly robust against random failures but extremely vul-
works. As the ratio of inactive oscillators to the total nerable to targeted failures, or attacks to hubs with high
population increases, the macroscopic oscillatory ac-degrees. These two aspects of robustness and fragility
tivity of the whole network decreases and eventually can be caused by the difference in the change of aver-
stops at a critical ratio. This phase transition, called an age path length after removal of nodes. Many efforts
aging transition in [Daido and Nakanishi, 2004], has have been made to elucidate a general property of cas-
been studied with simple networks so far. To extend cading failure in the framework of percolation theory
the conventional framework, we analyze aging transi- [Callaway et al., 2000; Newmaret al, 2001; Costa,
tions in complex networks including random and scale- 2004; Buldyrevet al, 2010]. In these models, some
free networks. The critical ratio is theoretically de- damaged nodes are initially removed from a network
rived through appropriate approximations and numer- and other nodes are sequentially removed as a result of
ically verified. cascading failure. The size of the giant component (the

largest set of connected nodes) which finally remains
is regarded as a macroscopic quantity representing a

Key words degree of network functionality. As the fraction of ini-
Phase transitions, complex networks, coupled oscilla- tially removed nodes increases, a phase transition oc-
tors curs and the giant component vanishes. However, this

framework is not applicable to understanding robust-
ness of networks composed of dynamical units.
1 Introduction For getting insights into robustness of biological
Complex networks have been intensively studied for systems consisting of dynamical elements [Basb
this decade, because a diverse range of real network2004], we analyze complex networks composed of cou-
possess non-regular structures [Strogatz, 2001]. Sta-pled oscillators in another framework. The tolerance of
tistical mechanics of complex networks have been ex- a network against inactivation of oscillators is exam-
plored with data analyses of social, communication, bi- ined. As the ratio of inactivated oscillators increases,
ological, computer, and power networks [Albert and the global oscillations are diminished. When the ra-
Baratasi, 2002; Newman, 2003; Boccaletit al, tio increases beyond a certain critical value, the global
2006]. Complex network theory is not only useful for oscillations terminate. This phase transition is called
understanding the mechanism of structures in real net-an aging transition [Daido and Nakanishi, 2004]. The
works but also significant for designing robust and re- critical ratio can be regarded as an index of robust-
silient networks [Vespignani, 2010]. ness of the network: the higher the critical ratio is, the
One of the major topics in complex newtork theory more robust the network is. So far, aging transitions
is robustness and fragility against failures and attacks have been investigated with simple network topologies
[Albert et al., 2000; Callawayet al., 2000; Motter and  [Daido and Nakanishi, 2004; Daido and Nakanishi,
Lai, 2002]. A breakdown of a whole network can be 2007; Paé and Montbrd, 2006; Daido, 2008; Tanaka
caused by cascading failure, which is often responsible et al., 2010; Morinoet al.].
for blackouts and computer system failures. Evenifthe We explore aging transitions in complex networks of
initial failure serving as a trigger of cascading failure is active and inactive oscillators. First, we analytically
the same level, the damage of the whole network can bederive the condition for aging transitions in random



networks by using system reduction technique. We
clarify that the link density as well as the coupling (a) ‘
strength play important roles for the phase transition. A 100

Second, we analyze aging transitions in scale-free net- ~ 80

works by using approximations with degree-weighted

mean fields. The analytical results are verified by nu- 40
merical simulations.
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f] zj N Z Ajk 2k — z] (1) Flgure 1. The degreee (a) and the amplitudes (b) of the oscillators
=1 in a random network wittV" = 1000, (k) = 80, K = 30,

andp = 0.4. The vertical line separates inactive (left) and active

Wherezj is the complex state variable of thith oscil- (right) oscillators. The degrees are sorted in decending order within
lator, f;(z;) = (a; +iQ — |2;])2;, K is the coupling ~ ©ach group.

strength, and! = (4,) is the adjacency matrix where

A = 1if the jth andkth oscillators are connected

while A;, = 0 otherwise. This symmetric matrix de-  dition for an aging transition. We introduce the link
termines the network topology, which is simple in the densityd, which is the proportion of the total number
previous studies but complex in our study The degree of |inks to the pOSSIb|e maximum number of links, i.e.

of the jth node is indicated by; = S Ay _ d = N(k)/N(N —1), where(k) = (1/N) Z]: kjis
The single oscillator without coupling (i.é¢ = 0) is the mean degree. The link density can be approximated
represented by Stuart-Landau equation: («+i2—  asd ~ (k)/N for a sufficiently large number oV,

|2[?)z, which is a simple system describing the dynam- Then, the number of active oscillators in the neighbors
ics near a Hopf bifurcation at = 0. It shows self-  of each oscillator is expected to be— p)(k) and that
oscillatory behavior with amplitudg/a- and frequency  of inactive oscillators to bg(k). By settingz; = A for

Q2 for oo > 0, while non-oscillatory behavior after tran-  a| active oscillators and; = I for all inactive oscilla-
sient damping oscillations far < 0. We suppose that  tors, we obtain

some active oscillators are randomly inactivated with

ratiop. The set of the inactivated oscillators is denoted

by S; and that of others by 4. We seto; = —b < 0 A
forj € S;anda; = a > 0for j € S4, wherea =1 I=
andb = 3 throughout this article.

The macroscopic oscillations of the whole network
is evaluated by the order parametéif whereZ =
(1/N) Z;.Vzl zj. As the ratio of inactive oscillators
increases from zero, the order parameter suddenly falls
below a very small threshold value at a critical point
p. due to an aging transition. The threshold is fixed at
105, Numerical integrations were performed by the
fourth-order Runge-Kutta method with time step 0.1.

(a — Kpd +iQ — |A>)A+ KpdI, (2)
(=b— Kqd+iQ — |I|)I + KqdA, (3)

whereqg =1 — p.

Inthe limitof N — oo, the ratiop can be regarded as a
real number between 0 and 1. Since an aging transition
occurs when the trivial equilibrium poit = 7 = 0
is stabilized a® is increased from 0, a linear stability
analysis yields

a(Kd+b)

Pec = m- (4)

3 Results
3.1 Random networks
We first consider a random network where the degreesFigure 2 shows that the theoretical result is in good
are distributed around the mean degree and the variancegreement with the numerical result, although it is in-
of the degree distribution is relatively small. In such fluenced by the configuration of a random network for
networks, the oscillations in each subpopulation of ac- p close to 1. The aging transition points obtained by nu-
tive and inactive oscillators are almost synchronized merical simulations (the circle with the error bar) and
for a sufficiently large coupling strength. Figure 1 analytical form (4) are plotted in th@s, p)-plane. As
shows that the amplitudes of the oscillators are nearly K goes to the infinity, the critical ratip. converges to
the same in each group and seem to be independent ofi/(a + b) as in the globally coupled network [Daido
the degrees in an Edd-Renyi random network [Eiks and Nakanishi, 2004]. From the condition that= 1,
and Renyi, 1960]. Using this property, we perform sys- the critical coupling strength is obtained &S = a/d
tem reduction and thereby theoretically derive the con- with d fixed, below which an aging transition does not
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Figure 3. The degrees (a) and the amplitudes (b) of the oscillators
Figure 2. The aging transition points in the BsdRenyi random in a scale-free network wittV = 1000, (k) = 80, K = 30,
networks with N — 1000 and <k> — 80 (ie. d = 0.08) andp = 0.5. The vertical line separates inactive (left) and active

The circle with the error bar indicates the numerical result for 10 (right) oscillators. The degrees are sorted in descending order within

network realizations. The dashed line indicates the theoretical result each group.

given by Eq. (4). The critical coupling strength above which an aging

transition occurs is given b . = a/d = 12.5.
and Mikhailov, 2009]. Considering the local field:

N

take place untip = 1. A similar diagram can be de- hj = ZAjkzk, (5)

picted in the(d, p)-plane whenk is fixed. The critical k=1

density is given agd,. = a/K, below which an aging

transition does not occur. In the casedf= 1, the Eq. (1) is rewritten as follows:

network corresponds to the globally coupled one and

Eq. (4) is reduced to the result derived in the previous K

study [Daido and Nakanishi, 2004]. zi = fi(z) + N(hj — kjzj). (6)
In random networks, it is feasible to assume that the

oscillators in each subpopulation of active and inactive

elements are synchronized. Since they are regarded a

identical oscillators in each group, the system reduc-

tion based on this assumption is successful. A similar

analysis is possible for a network where the degree dis- . . . . .

tribution is relatively homogeneous, e.g. small-world mean fields for aCt'Vej and inactive subpopulations, re-

networks. For such networks, the robustness is depen—SpeCt'Vely’ as follows:

dent on the link density as well as the coupling strength.

gor a sufficiently large number a¥, the number of
active oscillators in the neighbors of thith oscillator
is expected to bél — p)k; and that of inactive oscil-
lators to bepk;. Here we introduce degree-weighted

> jesa kizi(t)

HA(t) = Z k. ’ (7)
3.2 Scale-free networks J EZ“ !
In contrast to random networks, the degree distribu- Hi(t) = M (8)
tion of a scale-free network is highly heterogeneous. A ZjGSJ kj

scale-free network is composed of a small number of

nodes with many degrees and a large number of nodes We assume that the local field is approximated by us-

with few degrees. This network heterogeneity largely ing the degree-weighted mean fields as follows:
influences the oscillatory dynamics and the aging tran-
sition. As shown in Fig. 3, the amplitudes of oscilla-

tions depend on the degree of oscillators. Therefore,

the system reduction technique in the previous subsec-

tion is not valid for scale-free networks. With this assumption, the oscillators with the same de-
We consider mean fields for each subpopulation of ac- gree are viewed as identical ones and Eq. (6) is rewrit-

tive and inactive oscillators, because active and inactive ten as follows:

oscillators behave differently even if the degree is the

same. We use a degree-weighted mean field approxi- . Kk;

mation for system re%uction, ?Nhich was employgc? for 4 =1Fi(z)+ TJ((l —PHAR) +PHi(t) = 25)-
analysis of scale-free networks of oscillators [Nakao (20)

hy(t) = (1= p)k; Hat) + phyH (1), (9)



From numerical simulation of the coupled system, we From Eq. (15), the stationary state before an aging tran-
notice that all the oscillators exhibit phase synchro- sition is a positive real solution of the following cubic
nization of oscillations with frequenc2. Thus, we equation:
suppose that the state variables are written, &8 =

r;(t) exp(i(Qt + 0)), wherer; is the amplitude and

3 —
is the phase delay. Then, the mean fields for the two ry —Biri —6; =0, (19)
subpopulations are respectively described as follows:
where
Ha(t) = Ra(t)e' 0, (11)
Hy(t) = Ry(t)e’ ), (12) Bj = aj — Kkj/N, (20)
Kk;
05 = TJ((l —p)Ra+pRy). (21)
where
3 for It should be noted that; depends on the oscillator type
Ry =254 97 (13)  (active or inactive) and the degree of tjta node. It is
ZjESA kj obvious that; > 0 for R4, Ry > 0 becausé® < p <
> ies, kirj 1. The number of real solutions of the cubic equation
R = > es ki (14) is different according to the sign ¢f;. Therefore, we
e separately consider the cases®f< 0, 3; = 0, and
o ) ) ﬁj < 0.
By substituting Egs. (11)-(12) into Eq. (10), we obtain |t 5. < 0, then the cubic equation has only one real
the following evolution equation: root because the discriminait = 433 — 2762 is neg-
ative. The real root is described as follows:
Kk;
7= (aj — L - JQ)TJ
Kk; ~ = (X AP -y -Xx) (22
+7N] (L =p)Ra +pRy). (15)
where
OnceR 4 andR; are given, the amplitude of the oscil-
lations in a stationary state is obtainedvgi(sRA, Ry) X — 57; (23)
from Eq. (15). The self-consistency of the mean 2’
field approximation requires that the mean fields in 5\ 2 3; 3
Egs. (13)-(14) calculated from these stationary am- Y = (2]) — (5) (24)

plitudes are consistent with the originally given ones.
Namely, it follows that
SinceX <Y,0; =2X=(X+Y)—- (Y -X)>0.

1/3 _ v\1/3 *
Y e, ki (Ra, Ry) He.nce,(X+}_f.) > (Y_ X)'/4and thgrebyq >0,
Ry =Ga(Ra,Ry) = ’ , (16) A linear stability analysis shows that this positive solu-
2jesa ki tion is stable. By differentiating Eq. (21) and Eq. (22),
o kir¥(Ra, R we obtain the following derivatives:
Rr = Gr(Ra, Rr) = 2jes; o7y (R, Rr) (17) J
ZJESI kj
or; _ o9y
There exists a stable solution wifty,, R; > 0 before ORAlp,—p,—0  99jls,—0 ORalg,—g,—o
the aging transition, while t_h_e origiRy = Ry =01is 1 (1—p)Kk;
stable after the aging transition. Therefore, the change = _E TN (25)
of the stability of the origin corresponds to the critical o P 7
transition point. The condition can be discussed by the "y =9 . 99
eigenvalues of the linearized matrix at the origin, de- ORI | p,—p=0 D9 ;=0 OR1| g, =R,=0
scribed as follows: 1 Kk,
S i (26)
Bi N

(18)
Ra=Rr=0

Jo = ORA ORy
0 = | 9G1(Ra,R1) 98Gi(Ra,Rr)
ORA OR1

8GA(Ra,R1) 8Ga(RA,RI) ]

If 8; = 0, then the cubic equation has only one posi-
tive real root represented as follows:

Now let us calculate the components.if First we
derive % /OR4 and dr%/OR; at Ra = Ry = 0. rr=01" @7)



However, the derivative§r;.‘/6RA and 87’;/6‘]%1 di- can approximate all the other entries of the linearized
verge in the limit ofR 4, Ry — 0. Therefore, the mean matrix Jy. For simplicity of description, we define the
field approximation does not work in this case. following function:

If 3; > 0, the cubic equation has three real roots for
4, close to 0 because the discrimindht= 433 — 2757

( € ' N
. 1
is positive. The roots are described as follows K.a) = 5 Z (31)

P = wnL(X +iyl)1/3 +w3—m,(X _ Z-y/)l/?;

J
(m=0,1,2), (28) which is independent of the ratip WhenN is suffi-

ciently large, the following approximations hold:
whereY’ = iY is a positive real value and = ¢>7%/3,
By introducinge’® = (X + iY’)/V/ X2 + Y72, they

are calculated as® = 2./3;/3cos((© + 2mmn)/3) _

(m =0,1,2). In trj1e limit of R4, Ry — 0 (6; — 0), Njezs: d; —ag/K ~ (1 =p)F(K,a), (32)
the three roots approach /3; /3 cos(w/6 + 2mn/3) 1 02

(m = 0,1,2), respectively. The only positive root — Z —1—— ~pF(K,-b). (33)
given by the above root witlm = 2, corresponding to ]Es, dj — O‘J/K

the stationary amplitude, remains positive even if the
given mean fields vanish. Hence, the self-consistency
of the mean field approximation conflicts with the pre-
sumption that an aging transition occurs at a ratio
the range of) < p < 1.

Form above discussions, we assumje< 0 for all
j in what follows so that the mean field approxima- [(1P)F(K’a) pF(K,a) ]

0 — b)

Substitution of the above equations into Eq. (30) and
into the corresponding equations for the other compo-
nents yields

tion works well. This assumption is satisfied if the
minimum degree of the active oscillator populations is
larger thana N/ K. From Eq. (16) and Egs. (25)-(26),
the (1,1)th entry of the linearized matrik is obtained

(34)

d d
(1-p)F(K,~b) pF(K,—
d d

The characteristic equation of this matrix is given by

as follows:
9G A _ 2 (A-p)F(K,a)  pF(K —b)
aRA Ra=Rr=0 X()\) A < d i d .
1 87“;7
= S ok Z kj ORA The condition that the solution &, = R; = 0 loses
JE€Sa™ \jesa Ra=Rr=0 its stability is given byy (1) = 0. By solving this equa-

tion with respect te, we finally get the critical ratio as

_U-pkK . (29)  follows:

- desA kj Z Kk, /N—
B F(K,a)—d

The configuration of the active and inactive oscilla- Pe = F(K,a) — F(K,—b)’

tors is determined independently of the degree distri-

bution. Therefore, the total number of links owned by

active oscillators can be approximatedg§e s, ki = To verify the theoretical result, we generate a trun-
(1 — p)N(k) by using the mean degref) of the cated scale-free network by the preferential attachment

whole network. WhenV is sufficiently large, using  rule [Baralasi and Albert, 1999; Albert and Baradi,
the link densityd ~ (k)/N, it is further approximated ~ 2002], where the minimum degree is nearly a half of
aszjesA k; ~ (1 — p)dN2. Thus, the derivative in the mean degree. Figure 4 shows a phase diagram
Eq. (29) can be approximated as follows: in the (K, p)-plane, where the aging transition points
obtained by numerical simulations and the aging tran-
sition curve represented by the analytical form (35)
0G4 are plotted. The theoretical result is in good agree-
—= Z ,(30) : . i .
ORA g —r —o dj — J/K ment with the numerical result. The critical coupling
AT Ve strength is given as(. ~ aN/knin Wherekny, =
min;k;, below whichp. = 1. When K approaches
whered; = k;/N is the normalized degree. Note that K. from aboveF (K, a) becomes large enough to ne-
the average of the normalized degrees is equivalent toglect the other terms in Eq. (35) and accordingly
the link density in the limit ofN — oo. Similarly, we approaches 1.

(39)
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4 Conclusions
We have studied phase transitions in mixed popula-
tions of active and inactive oscillators on complex net-
works. As the ratio of inactive oscillators increases,
the order parameter indicating the global activity of the
whole network decreases. A phase transition occurs
at a critical ratio when the order parameter vanishes.
We have theoretically derived the critical ratio using
system reduction. For random networks, by regarding

. . . X M
the oscillators to be identical in each subpopulation, we
have obtained the reduced model which well explains
the phase transition. The result has shown that the link
density as well as the coupling strength play important
roles for the transition. For scale-free networks, the
degree-weighted mean fields work very well to approx-
imate the phase transition curve. Currently the scaling
property near the transition point is under investigation.
The approximation methods that we have introduced
would be useful to understand phase transitions, syn-
chronization, and collective behavior in complex net-
works of coupled oscillators.
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