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Abstract
This work considers state constrained optimal con-

trol problems in the presence of parameter uncertain-
ties and provides necessary conditions in the form of
a maximum principle. The uncertain parameter, repre-
sented by a vector taking values in a given compact set
in a metric space, might affect both the objective func-
tion and the dynamics. The necessary conditions ob-
tained here are a generalization of the minimax maxi-
mum principle derived earlier for optimal control prob-
lems in the sense that, now, we consider state con-
straints. Moreover, our set of necessary conditions is
different due to the fact that they are formulated in the
Gamkrelidze framework.
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1 Introduction

In this article we study the minimax optimal control
problem with state constraints. This research builds
on the work [Vinter, 2005], where the author derived
a maximum principle of the Pontryagin type for an op-
timal control problem involving a set of unknown pa-
rameters. We borrow most of the methodology from
[Vinter, 2005] but with a critical twist which pays a key
role in allowing the incorporation of state constraints:
we adopt the Gamkrelidze framework. This is instru-
mental in overcoming the mathematical technicalities
inherent to the presence of measures in the multipliers
of the optimality conditions that emerge at the points in

time in which the constraints are active. The fact that
our multipliers do not involve measures also brings sig-
nificant computational advantages. On the other hand,
the extra smoothness required in our framework, also
implies that additional information is provided by our
conditions.
One of the distinguishing features of the Maximum

Principle for the minimax problem is that the maximum
condition involving the extended Pontryagin function
is stated as a form distributed over the set of unknown
parameters.
The investigation of the Necessary Conditions of Op-

timality for the minimax control problem becomes sig-
nificantly more complex due to the presence of a degen-
eracy effect which is related to the state and state end-
point constraint. This phenomenon has been described
in detail in [Vinter, 2005] where a number of examples
showing that the degeneracy is generally unavoidable
for certain types of endpoint constraints, such as, e.g.
equality constraints imposed on the both endpoints.
Thus, in order to preserve the meaning of the mini-
max optimal control problem with endpoint constraints
consists in consider special classes of sufficiently large
endpoint state constraint sets. A key difficulty arising
in the proof is due to the fact that the set of normal-
ized Lagrange multipliers becomes non-convex what
prevents the application of certain standard technique
to find a measurable Lagrange multiplier.
However, the practical motivation is sufficiently in-

tense to feed the substantial effort required to attempt to
overcome these these huge challenges. Uncertainty is
extremely pervasive when modeling most real-life sys-
tems involving either natural processes or human en-
gineered systems. The optimal control community has
been devoting a large effort to investigate various kinds



of issues concerning the sensitivity of optimality con-
ditions. However, this is not a remedy if the problem
at hand that actually has to be solved does not behave
well in this respect. Then, we are left with the challenge
of deriving optimality conditions which are meaningful
for the worst case of the value of the perturbations.
This article is organized as follows. In the next section

we state the problem, list the assumptions on its data,
and provide some basic definitions. In section 3, we
state our necessary conditions of optimality in the form
of a maximum principle and provide, not only a discus-
sion specifying a context in the current state-of-the-art
but also an outline of the main arguments underlying
the proof. In the final section, some conclusions are
extracted and prospective challenges are listed.

2 Problem statement

We start by considering the following minimax opti-
mal control problem

(P ) Minimize max
w∈C
{g(x(1), w)} (1)

ẋ(t) = f(x(t), u(t), w), [0, 1]-a.e. (2)
x(0) = x0, x(1) ∈ S (3)
u ∈ U , and (4)
h(x(t), w) ≤ 0, ∀ t ∈ [0, 1]. (5)

From now on, ẋ =
dx

dt
, for t ∈ [0, 1], x is the state

variable with values in Rn, u is the control functions
from a given set U := {u ∈ L∞([0, 1];Rm) : u(t) ∈
Ω}, where Ω is some given compact set, w ∈ Rl is the
so-called unknown parameter taking values in a given
compact set C, and the set S is compact. The maps
g : Rn × Rl → R, f : Rn × Rm × Rl → Rn, and
h : Rn × Rl → Rk are continuous in u, and w, and is
Lipschitz continuous and sufficiently smooth in x. The
control function is a measurable function u : [0, 1] →
Ω. Note that the unknown parameter w ∈ C does not
depend on time.
The control process (x, u) comprises the function u

and the family {x(t;w)}w∈C of arcs, satisfying for
each w ∈ C, the equation

ẋ(t;w) = f(x(t;w), u(t), w) L-a.e. in [0, 1],

with x(0;w) = x0.
The control process (x, u) is feasible if the endpoint

constraints x(1;w) ∈ S as well as the state constraints
h(x(t;w), w) ≤ 0 ∀ t ∈ [0, 1] are satisfied for each
w ∈ C.
The control process (x̄, ū) is said to be optimal if and

only if

max
w∈C
{g(x(1;w), w)} ≥ max

w∈C
{g(x̄(1;w), w)}

for all feasible processes (x, u).
Thus, we have to consider first the maximization of

the cost over the set of all unknown parameters to get
the worst case performance for any given control strat-
egy u. Then, we minimize over all control functions u
in order to obtain the optimal solution that guarantees
a minimum cost no matter how bad is the impact of the
worst case value of the unknown parameter w.

3 The Necessary Conditions of Optimality

In this section, we state the Necessary Conditions of
Optimality in the form of maximum principle for the
above problem. Given not only its apparent complex-
ity, but also the difficulty in ensuring the critical prop-
erty of nondegeneracy, we will provide the bridges to
the simpler cases in which the set C is a finite set of
points and, ultimately, to the conventional optimal con-
trol problem if C is reduced the a single point.
Our maximum principle is stated in the R.V. Gamkre-

lidze framework (for details, see Chapter 6 in [Pon-
tryagin, Boltyanskij, Gamkrelidze, Mishchenko, 1962]
and also [Gamkrelidze, 1960; Arutyunov, Karamzin,
Pereira, 2011]).
Let us define some notation.
Consider the extended Pontryagin (also known by

pseudo-Hamiltonian) function

H̄(x, u, w, ψ, µ)

:= 〈ψ, f(x, u, w)〉 − 〈µ,Γ(x, u, w)〉,

where Γ(x, u, w) := Dxh(x,w)f(x, u, w) is the so-
called Gamkrelidze function, denotingDx the Jacobian
of the vector field h with respect to x.
Throughout the article, NS(x) designates the limiting

normal cone to the set S at point x in the sense pro-
posed by B. Mordukhovich, [Mordukhovich, 2006]. To
the best of our knowledge, this mathematical object ap-
peared for the first time in [Mordukhovich, 1976]. The
limiting subdifferential, defined via NS , is denoted as
usual by the symbol ∂.
The necessity to avoid the degeneracy effect, see [Vin-

ter, 2005], forces us to restrict our consideration to the
case when the set S is given by a certain number of
smooth functional inequalities, i.e.,

S := {x ∈ Rn : ej(x) ≤ 0, j = 1, . . . , r}.

In this instance, NS(x̄) is the cone defined by all the
nonnegative linear combinations of all ∇xej(x̄) - i.e.,
the gradients of the ej’s at x̄ - for which ej(x̄) = 0.

Theorem 1. Suppose that (x∗, u∗) is a solution to (P ).
Then, there exist a Radon probability measure Λ on
C and, for each w ∈ C, a set of Lagrange multipli-
ers λ(w) ∈ [0, 1], ζ(w) ∈ NS(x∗(1;w)), p(·;w) ∈



AC([0, 1];Rn), and µ(·;w) ∈ BV ([0, 1];Rk), which
non-trivial, i.e.,

λ(w) + |ζ(w)|+
k∑

j=1

µj(0;w) = 1, Λ-a.e.,

such that

−ṗ(t;w) = ∇xH̄(x∗(t;w), u∗(t), w, p(t;w), µ(t;w))

L-a.e. in [0, 1]

−p(1;w) = λ(w)∇xg(x∗(1;w), w) + ζ(w), w ∈ C

max
u∈Ω

∫
C

H̄(x∗(t;w), u, w, p(t;w), µ(t;w))dΛ

=

∫
C

H̄(x∗(t;w), u∗(t), w, p(t;w), µ(t;w))dΛ

L-a.e. in [0, 1]

where the function µ satisfies:

a) the set µj([a, b];w) is a singleton, if
hj(x∗(t;w), w) < 0 ∀ t ∈ [a, b];

b) each function µj(·;w) is monotonically decreas-
ing; and

c) for each j, µj(1;w) = 0,

and the Lagrange multipliers λ, and µ are Λ-
measurable, p is Λ-measurable for all t ∈ [0, 1], and
µ is Λ-measurable for a.a. t ∈ (0, 1], and for t = 0.

We note that this maximum principle degenerates
whenever there exists w ∈ C such that hj(x0, w) = 0
for some j. Indeed, to see this, we just need to consider
the Radon measure Λ = δw and the Lagrange multipli-
ers

(λ(w), ν(w), p(·;w), µ(·;w)) = (0, 0, 0, µ̄(·, w))

where µ̄i(·, w) = 0 if i 6= j, and

µ̄j(t;w) =

{
1, t = 0,
0, t > 0.

Thus, for control processes whose trajectories have a
starting point lying on the boundary of the state con-
straint set, the above results hold trivially true. More-
over, the necessary conditions of optimality may also
degenerate at the terminal point unless some com-
patibility assumptions are imposed, see [Arutyunov,
Karamzin, Pereira, 2011]. Then, a natural question
arises: how to overcome the degeneracy phenomenon?
Several approaches have been developed in the litera-

ture w.r.t. the classic problem statement, that is when
C is a singleton, see, e.g., [Arutyunov, Tynyanskij,
1984; Dubovitskij, Dubovitskij, 1985; Ferreira, Vin-
ter, 1994; Arutyunov, Aseev, 1997; Ferreira, Fontes,

Vinter, 1999; Arutyunov, 2000; Arutyunov, Karamzin,
Pereira, 2005; A. V. Arutyunov and D. Yu. Karamzin,
2015]. The same approaches can be applied to the
study of minimax state constrained control problem as
well.

Now, we just provide a brief outline of the key ideas
underlying the proof of this result. It consists in con-
sidering an increasing sequence of finite sets {CN}
converging adequately to C, and constructing a se-
quence of auxiliary optimal control problems {(PN )}
with (PN ) similar to (P ) but with the setC replaced by
CN . It is shown that, by using standard variational ar-
guments, notably Ekeland’s variational principle, [Eke-
land, 1974], Theorem 2 below can be applied to the re-
sulting sequence of new auxiliary optimal control prob-
lems to provide a sequence of multipliers converging to
the ones satisfying the conditions of our result. Further
details will be available in [Karamzin, Oliveira, Pereira,
Silva, 2015].

Before stating the necessary conditions of optimality
for the problem (PN ), let us observe that if N = 1,
i.e., C = {w0} for some w0, then our optimal control
control problem (P ) becomes a standard one. Clearly,
in this case, we may simply remove the variable w in
the statement of problem (P ), and, then, the Neces-
sary Conditions of Optimality turn out to be the al-
ready well-known ones, see [Gamkrelidze, 1960; Aru-
tyunov, Karamzin, Pereira, 2011]. Now, note that, for
this particular case, the conditions can be improved in
that an arbitrary closed endpoint constraint set S can
be considered. From now on, we consider (PN ), the
instance o problem (P ) with, not only C replaced by
CN but also this more general set S. Its conditions can
be stated as follows:

Theorem 2. Let (x∗, u∗) is a solution to (PN ).
Then, there exists a Radon probability measure

Λ(w) =

N∑
i=1

ciδwi(w) on C, where the N num-

bers ci are nonnegative and satisfy
N∑
i=1

ci > 0, and,

for each w ∈ C, a set of Lagrange multipliers
λ(w) ∈ [0, 1], p(·;w) ∈ AC([0, 1];Rn), and µ(·;w) ∈
BV ([0, 1];Rk), which are non-trivial, i.e.,

λ(w) + max
t∈[0,1]

|p(t;w)|+ |µ(0;w)| = 1, Λ-a.e.,

such that the conditions of Theorem 1 are satisfied for
all w ∈ CN .

In order to see that (PN ) can be easily converted into
a conventional optimal control problem, i.e., the case
N = 1, with an nonsmooth cost functional and a state
variable with dimension n × N , just consider the fol-
lowing notation:

x̄ = col(x1, x2, · · · , xN ),



f̄(x, u) = col(f1(x1, u), f2(x2, u), · · · , fN (xN , u)),
ḡ(x̄(1)) = max

i=1,...,N

{
gi(xi(1))

}
,

h̄(x̄(·)) = max
i=1,...,N

hi(xi(·)),

S̄ = SN , and
{x̄0} = {x0}N .

Here, theN power of a set is interpreted as theN times
Cartesian product of the set, being, for i = 1, . . . , N ,
gi(x) = g(x,wi), f i(x, u) = f(x, u, wi), and xi the
solution to ẋ(t) = f i(x(t), u(t)) for some u ∈ U with
x(0) = x0. Remark that this new extended optimal
control control exhibits the same structure and is equiv-
alent to (PN ).
For the sake of completeness, we recall the Maxi-

mum Principle in the Gamkrelidze framework already
derived in [Gamkrelidze, 1960; Arutyunov, Karamzin,
Pereira, 2011] for this conventional optimal control
problem (P1)

Theorem 3. Let (x∗, u∗) be a solution to problem
(P1).
Then, there exists a set of Lagrange multipliers λ ∈

[0, 1], p ∈ AC([0, 1];Rn), and µ ∈ BV ([0, 1];Rk),
which are non-trivial, i.e.,

λ+ max
t∈[0,1]

|p(t)|+ |µ(0)| = 1,

such that

−ṗ(t) = ∇xH̄(x∗(t), u∗(t), p(t), µ(t))

L-a.e. in [0, 1]

−p(1) ∈ λ∇xg(x∗(1)) +NS(x∗(1)),

max
u∈Ω

H̄(x∗(t), u, p(t), µ(t)) =

H̄(x(t)∗, u(t)∗, p(t), µ(t)),

L-a.e. in [0, 1],

where the map µ : [0, 1] → Rk satisfies the following
properties:

a) if hj(x∗(t)) < 0 ∀ t ∈ [a, b], then the set µj([a, b])
is a singleton;

b) each function µj is monotonically decreasing; and
c) for each j, µj(1) = 0.

Albeit the arguments underlying the proof of this re-
sult - based on straightforward application of varia-
tional analysis, [Mordukhovich, 2006; Vinter, 2000]
- are well known, for the sake of completeness, we
will provide an outline here. The proof consists
in constructing a sequence of auxiliary optimal con-
trol problems whose state constraints and endpoint
state constraints are removed by adding to the cost
functional an appropriate nonsmooth penalty function,
[Arutyunov, Karamzin, 2015; Karamzin, 2002; Aru-
tyunov, Karamzin, Pereira, 2015], and for which there

corresponds a sequence of almost minimizers that con-
verge to the solution to the original problem (P). Then,
Ekeland’s variational principle, [Ekeland, 1974], is ap-
plied and we obtain another sequence of optimal con-
trol problems whose sequence of solutions and asso-
ciated set of multipliers converge, respectively, to the
solution of (P) and to an associated multiplier that sat-
isfies the maximum principle. Further details will be
available in [Karamzin, Oliveira, Pereira, Silva, 2015].

In [Arutyunov, Karamzin, Pereira, 2011; Arutyunov,
Karamzin, Pereira, 2011], it is shown that there is a re-
lation between the necessary conditions in Dubovitskii-
Milyutin form, [Dubovitskij, Milyutin, 1963] and those
in Gamkrelidze form, [Gamkrelidze, 1960]. However,
it is important to remark that the necessary conditions
of optimality in Theorem 3 are convenient to inves-
tigate the continuity of the Lagrange multiplier µ in
many regards, such as, e.g., [Arutyunov, 2012; Aru-
tyunov, Karamzin, Pereira, 2014; Arutyunov, 2012;
Karamzin, 2007; E.V. Zakharov, D.Yu. Karamzin,
2015; A. V. Arutyunov and D. Yu. Karamzin, 2015].
This type of assumptions are very important in many
engineering applications.

We remark that it is a trivial matter to extend the Theo-
rem 1 for the case for which f depends on the time vari-
able t, being this dependence merely measurable, (see
the assumptions on the data in [Arutyunov, Karamzin,
Pereira, 2011]).

4 Conclusions and future work

In this article the authors present, discuss and outline
the proof of necessary conditions of optimality in the
form of a Maximum Principle for mini-max optimal
control problems, that is, we provide a characterization
of the minimum cost of the optimal control problem for
the worst case of a certain finite dimensional parameter
constrained to a given set. The motivation for this type
of results is huge since it provides a kind of robust op-
timality in very usual engineering and natural system
contexts which, typically, are plagued by modeling un-
certainty and unmodeled perturbations.
As it was shown in the previous section with a coun-

terexample, the Maximum Principle in Theorem 1 may
degenerate. These arguments also show that the same
feature is exhibited by the optimality conditions of The-
orems 2 and 3. An important line of development is to
improve the derived results in order to ensure nonde-
generacy. One way to overcome this drawback is to
use a method inspired on the one of A.V. Arutyunov in
[Arutyunov, 2000], based on a time-transversality con-
dition. The main idea is to assume, for a while, that the
time interval [0, 1] in problem (P) is not fixed, and now
it is [t0, 1], where the left time-endpoint t0 is free. In
this context, we let the optimal process to be the same,
that is (x∗, u∗) defined on [0, 1], with t∗0 = 0. Then,
the necessary conditions of optimality can be supple-



mented by a time-transversality condition which en-
ables to ensure the nondegeneracy.
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