An analytical investigation of steady-state flutter of the hereditary deformable plates in supersonic flow field

Abstract

This article deals with an analytical investigation of steady-state flutter of a closed cylindrical body placed in a supersonic flow field, which has hereditary-deformable characteristics. For simplicity, two-dimensional aerodynamic flow is considered. The structural model is represented by the integro-differential equation. Aerodynamic model of the problem is based on the aerodynamic piston theory. Bubnov-Galerkin method is used to discretize partial differential equation of motion of the plate. The influence of relaxation parameters on the plate modal frequencies and critical flutter speed is examined analytically. The relaxation parameters and hereditary properties of the material are found to have opposite effects on the time evolution of the panel frequency and critical speed. The analytical solution of steady-state flutter is obtained for the first time for hereditary-deformable shell and flat plate.
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= load in the median plane


[image: image7.wmf]m




= linear mass of plate
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= speed of the flow
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= transverse deflection of the plate
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= Polytrophic gas coefficient
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1. Introduction

The term “hereditary-deformable” material has a broad meaning. In the literature, this term is used if the equation of motion includes a damping term. In this work, the equation of motion includes the integral term, and the history of strain (or stress) is required for its formulation. The authors focus on the development of a mathematical model, where relaxation and hereditary properties of materials are taken into account for deformation-stress analysis of structure, to drive an analytical solution of flutter of the hereditary-deformable body in supersonic flow field. 

The time factor on investigation of the flutter problems is based on the application of the Volterra principle, which allows solving tasks with hereditary properties of the material. In state of the art, presentation of the deformation on real body consists of two terms: the first term depends on the deformation at present time and the second one, on the deformation from previous period of existence (history). Mathematically, it can be described as follows:
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where
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is the deformation condition at present moment of time-
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 is the function which counts influence of the previous moment of time-
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Then, the elementary change of 
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By integrating the expression (2) at 
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Consequently, by adding the term 
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Solving integral Eq. (4) with regard to 
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Consequently, a mathematical model of the structural dynamic is based on the integral expressions (4) and (5). The integral equations are describing simultaneously as internal friction as the deformation creep and the stress relaxation of material. This property of the material is called a hereditary property. Mathematically, these deformations are described in  Eq. (5), where 
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By using the linear piston theory, the equation of motion of the body is written in the following form:
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where 
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The principal equations to be used are the stress–strain relation of the material (6) and the equation of motion of the structure (8).

The applications of numerical method for stability problems of the viscoelastic systems are mostly described in the literature in the context of the time numerical integration, for example, [1]. The numerical methods for Volterra’s equations can be found in the literatures [2, 3].

2. Solution procedure

2.1. The closed cylindrical hereditary-deformable shell

First, the authors consider a closed cylindrical hereditary-deformable finite length shell located in the supersonic flow field. The velocity of an undisturbed flow, V, is directed along the strainless generatrix of the shell. Moreover, this direction coincides with the x-axis of the rectangular coordinate system. 
Assume the aerodynamic load on the external surface of the shell is defined by the linear piston theory [4]. Next, the authors consider that axially symmetric fluctuations of a shell are described by the integro-differential equation with acceptable accuracy [5]: 
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By introducing the dimensionless variable 
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(11) are used for the solution of the Eq. (10) in the form of 
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Then, if the integral identities are used, one can obtain 
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where 
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Now, decreasing all terms of Eq. (10) by term 
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are dimensionless variables. 

The solution of Eq. (15) must satisfy the corresponding initial and boundary conditions too.

The deflection 
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is searched in the form of the expression
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(16),

which satisfies boundary conditions at 
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By substituting Eq. (16) into Eq. (15) and using procedures for Bubnov-Galerkin method, one obtains a uniform system of algebraic equations 
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(17); 
The nontrivial character of Eq. (17) depends on the requirement of equality of the determinant: 
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From Eq. (17) at 
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(20) 
Moreover, from Eq. (20), one can obtain
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where 
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The construction of an analytical expression clearly shows the effect of hereditary-deformable properties of the material of design to the critical flutter speed. Moreover, it remains an actual problem of aero-viscous elastic stability. If the necessary conditions for a minimum of Eq. (21) is 
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, then it is not difficult to write an analytical expression for calculating critical speed and frequency of flutter 
[image: image72.wmf](

)

(

)

(

)

[

]

x

c

v

f

n

R

a

q

-

-

+

=

1

16

45

*

2

1

4

2

1

p

p

p

w

 






(22) 

[image: image73.wmf](

)

ú

û

ù

ê

ë

é

+

-

-

÷

ø

ö

ç

è

æ

+

+

=

y

x

c

fv

n

n

R

a

a

2

1

4

1

4

2

2

17

1

2

17

1

p

p

p

w

 



(23) 
In particular, in the ideal elastic case, when 
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(24), 
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According to Eqs. (24) and (25), from Eqs. (22) and (23),one obtains 
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(27) 
According to Eqs. (24)–(27), it can be concluded that  that the value of the critical flutter speed is independent and the critical frequency depends only on the loads 
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2.2. The flat cylindrical plate

The authors now consider the steady-state flutter of a thin cylindrical plate, which has linear hereditary-deformable structural properties. The velocity of undisturbed flow, V, is directed along the strain less line of a plate. Moreover, this direction coincides with the x-axis of a rectangular coordinate system. The authors assume that the aerodynamic load on the external surface of the plate is defined by the linear piston theory [1]. If the shallow plate theory is considered and the tangential forces of an inertia, 
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, is ignored, then the equation of motion [2] for the hereditary-deformable cylindrical plate in the flow field is as follows: 
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(29), 
where 
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The steady-state flutter hereditary-deformable cylindrical plate is described by the system of weak singular integro-differential equations in partial derivatives of Eqs. (28) and (29) with an order equal to eight. The first equation of the system of Eqs. (28) and (29) is the equation of the force balance at the plate element. The second equation is the compatibility equation of deformation expressed through a stress. 
Equations (28) and (29) are considered as steady-state flutter equations with only boundary conditions. For some of them, the system of equations allows the exact solution. 
For example, when all four edges of the cylindrical plate is pin-ended, then boundary conditions
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 where 
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 Eqs. (28) and (29) are introduced dimensionless coordinates  and representing solution of the system in the form 
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then, 
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where
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is a dimensionless stress. By applying Eq. (32), one can prove the following integral identities: 

[image: image99.wmf](

)

(

)

(

)

(

)

ph

x

ph

l

p

x

l

p

x

w

w

n

e

iR

R

d

W

d

aR

Eh

x

W

R

R

Eh

n

e

iR

R

W

n

d

W

d

n

d

W

d

W

R

t

i

s

c

n

t

i

s

c

n

n

n

cos

1

*

1

cos

1

2

*

1

2

2

2

2

4

4

4

2

2

2

2

2

4

4

2

+

-

=

¶

¶

-

+

-

÷

÷

ø

ö

ç

ç

è

æ

+

-

=

D

-

 ,
(34) 
where 
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(35) 
By substituting Eqs. (32) and (33) into (28) and (29), and using integral Eq. (34), one obtains a system of ordinary differential equations for the functions
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(36) 

[image: image103.wmf](

)

0

1

2

2

2

4

4

4

2

2

2

2

2

4

4

=

+

-

-

+

-

x

l

p

x

l

p

x

d

W

d

iR

R

d

F

n

d

F

d

n

d

F

d

n

s

c

n

n

n

 

(37) 
where 
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The solution of Eqs. (36) and (37)  is presented in a form which satisfies boundary conditions of Eq. (30) at 
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(38)
Substitute Eq. (38) into Eqs. (36) and (37) and replace the decomposition rates of the derivative 
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 where 
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Nontrivial character of Eq. (17) depends on the requirement of equality of the determinant: 
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(40) 
The second equation of Eq. (40) can be written in the form of
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The first expression of Eq. (40) can be determined by dependence of the frequency of plate fluctuations 
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 and velocity 
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 . All the other parameters are fixed. These dependencies have a common form of a typical loop 
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. When the number of inherent j is sufficient, then the solution by the Bubnov-Galerkin method is close to the exact solution.
Assume as in [5] that for any n number of waves in the circular direction selected, only two values of half-wave j and r in the longitudinal direction, which vary in general, are not even numbers. Then first determinant of system of algebraic equations of Eq. (40) will be written as 
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(41)
From condition of the Eq. (41) an explicit analytical dependence of velocity q from frequency 
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 is obtained in the form of 
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(42) 
Now from the conditions
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, the approximate value of the critical speed and frequency of flutter can be determined by an appropriate binomial approximation
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(44) 
In the perfect elastic case 
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(46) 
According to Eqs. (45) and (46) from (43) and (44), one has 
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(48) 
In Eqs. (47) and (48) the last elements are calculated as follows:
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(50) 
According to Eqs. (49) and (50),   the critical speed of hereditary-deformable cylindrical flat shell does not depend from load 
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). This result for perfect elastic case was described in [5]. However, flutter frequency decreases with the increase of compressive (
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. Then, according to Eq. (47), the phenomena of decreasing of a flutter speed for hereditary-deformable material of the structure are obtained.

3. Conclusion

The stability hereditary problem is usually investigated in the literature as an incremental integration in time. In this work, the analytical solution for the discrete dynamic problems (the steady-state stability problem) is presented for the first time. 

The stress–strain relation was used in a form of a hereditary law with the relaxation kernel represented by the exponential kernel of Abelian type. 

Two dynamic stability problems were considered in using the integro-differential equation. The expressions for the critical flutter speed and critical frequency were derived. From these expressions, the following result was derived:  the critical speed of the cylindrical shell does not depend on the load 
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 of the circular direction, if shear loads on median plane are absent 
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, as in elastic case [5]. Consequently, the hereditary-deformable property of the material of construction reduces the value of the critical flutter velocity.
The analytical expression for the calculation of a critical speed is obtained for the first time for the hereditary-deformable plate. Thus, there were different views about flutter speed, such as intuitive conclusions of natural dissatisfaction [6–9] on the impact of hereditary-deformable characteristics of the structural elements of the aircraft at the critical flutter speed. The expression obtained here is refutes the aforementioned uncertainties and strictly confirms that the hereditary-deformable properties of the material significantly reduce the value of the critical flutter speed depending on the relaxation parameters, 
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