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Abstract

We systematize some results on the study of the equa-

tions of spatial motion of dynamically symmetric fixed
rigid bodies—pendulums located in a nhonconservative
force fields. The form of these equations is taken from
the dynamics of real fixed rigid bodies placed in a ho-
mogeneous flow of a medium. In parallel, we study
the problem of a spatial motion of a free rigid body
also located in a similar force fields. Herewith, this
free rigid body is influenced by a nonconservative trac-
ing force; under action of this force, either the mag-
nitude of the velocity of some characteristic point of

the body remains constant, which means that the sys-
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Figure 1. Fixed a pendulum on a spherical hinge in the stream run-

tem possesses a nonintegrable servo constraint, or thén9 Medium

center of mass of the body moves rectilinearly and uni-
formly; this means that there exists a honconservative
couple of forces in the system.
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1 Model assumptions

Let consider the homogeneous plane circle dizk
(with the center in the poinD), the plane of which
perpendicular to the holdepD. The disk is rigidly
fixed perpendicular to the tool holdérD located on
the spherical hing®, and it flows about homogeneous
fluid flow. In this case, the body is a physical (spheri-
cal) pendulum. The medium flow moves from infinity
with constant velocity = v, # 0. Assume that the
holder does not create a resistance.

We suppose that the total for&of medium flow in-
teraction is parallel to the holder, and poivitof appli-
cation of this force is determined by at least the angle
of attacka, which is made by the velocity vecter,
of the pointD with respect to the flow and the holder
OD (Fig. 1); the total force is also determined by the

angle 51, which is made in the plane of the digk
(thus, (v, a, B1) are the spherical coordinates of the tip
of the vectowp), and also the reduced angular velocity
w 2 IQ/vp, vp = |vp] (Lis the length of the holder,

Q is the angular velocity of the pendulum). Such condi-
tions arise when one uses the model of streamline flow
around spatial bodies [1], [2].

Therefore, the forc& is directed along the normal to
the disk to its side, which is opposite to the direction
of the velocityvp, and passes through a certain point
N of the disk such that the velocity vectep, and the
force of the interactiors lie in the planeODN (see
also [2], [3]).

The vectore = OD/I determines the orientation
of the holder. TherS = s(a)v%e, wheres(a)
s1(a)signcos «, and the resistance coefficient > 0
depends only on the angle of attack By the axe-
symmetry properties of the body—pendulum with re-
spect to the poinD, the functions(«) is even.

Let Dxyxzoxs = Dxyz be the coordinate system
rigidly attached to the body, herewith, the aXis: =
Dz, has a direction vecta, and the axe®zy = Dy
and Dzx3 = Dz lie in the plane of the dislD. In this
case, the anglé is made by the holder and the direc-



tion of the over-running medium flow (the axig); and since the moment of the medium interaction force is
the angley is made by the projection of the holder to determined by the following auxiliary matrix:
the immovable plang,z, (which perpendicular to the
over-running medium flow) and the axjs. Obviously,
the angles(d,v)) = (£,n1) are the spherical coordi- < 0 N x3N> ,
nates of the poinD. —s(a)vp 00
The space of positions of this spherical (physical) pen-

dulum is the two-dimensional sphere where {—s(a)v?,0,0} is the decomposition of the
medium interaction forcé& in the coordinate system

S2{(&,m) € R?*: 0< ¢ <, m mod2r}, (1) Daywoxs.

Since the dimension of the Lie algebrg 3pis equal

to 3, the system of equations (4) is a group of dynamical

equations on §8), and, simply speaking, the motion

equations.

We see, that in the right-hand side of Eq. (4), first of

T*SQ{(é, n1;€,m) € RY: @) all, it includes the angles, 3, therefore, this system

0< &<, m mod2r}. of equations is not closed. In order to obtain a complete

system of equations of motion of the pendulum, it is

necessary to attach several sets of kinematic equations

to the dynamic equation on the Lie algebréa3o

and its phase space is the tangent bundle of the two-
dimensional sphere

To the angular velocity, we put in correspondence
Q = Qe + Q26 + Q363 (€1, €, €3 the unit vectors of
the coordinate systemx,xox3) the skew-symmetric

matrix 2.1 Cyclic first integral
We immediately note that the system (4), by the exist-
0 —Q3 O ing dynamic symmetry
Q= 9 0 - |, Qesa3).
—h 0 I =1, 5)

The distance from the centér of the disk to the cen-

ter of pressure (the poinY) has the form possesses the cyclic first integral

0 Q; = Q) = const (6)
|rN|:TN:DN (a’ﬂh’(}D)’ (3)

In this case, further, we consider the dynamics of our
wherer y = {0, zan, 238} = {0,yn,2n} in System  system at zero level:
Dzixoxs = Dxyz (we omit the wave ove).

We note, likely in two-dimensional case, that the
model used to describe the effects of fluid flow on fixed
pendulum is similar to the model constructed for free
bOdy and, in fUrther, takes into account of the rotational Under conditions (5)_(7), the System (4) has the form
derivative of the moment of the forces of medium influ-  of unclosed system of two equations:
ence with respect to the pendulum angular velocity (see
also [3], [4]). An analysis of the problem of the spheri-
cal (physical) pendulum in a flow will allow to find the LDy = —zy (a,ﬁl, %) s(a)vd,

QY =o. (7

gualitative analogies in the dynamics of partially fixed c ( o ) 5 (8)
bodies and free three-dimensional ones. L&s =yn (@ b1, 5 ) s(@)vp.
2 Set of dynamical equations in Lie algebraso(3) 3 First set of kinematic equations

If diag{I, I, I} is the tensor of inertia of the body—  In order to obtain a complete system of equations of

pendulum in the coordinate systeb; xox3 then the motion, it needs the set of kinematic equations which
general equation of its motion has the following form: relate the velocities of the poi (i.e., the formal cen-
ter of the diskD) and the over-running medium flow:

L =0, LDy + (I} — 1)Q,Q3 =

= o (@61, 2 ) sty " Vp =t iufa ) =
1203 + (IQ — 11)9192 = — Q 0 + _ | _ (9)
=yN (a,ﬂl, %) s(a)vd, 0 (—Vo0)in (=& m),



where In other words, the relations

COS (& [9)
iy(a,01) = | sinacosfBy | . (10) (2) =Ti2(=m) (Qj)

sin asin 3y

hold, i.e.,

The equation (9) expresses the theorem of addition of
velocities in projections on the related coordinate sys-
temDzxixo13.

Indeed, the left-hand side of Eq. (9) is the velocity
of the point D of the pendulum with respect to the
flow in the projections on the related with the pendu-
lum coordinate systemzx223. Herewith, the vector
i,(c, 1) is the unit vector along the axis of the vector i ‘
vp. The vectoti, (a, 3,) has the spherical coordinates 29 =§, 21 =1 i;‘;é (13)

(1, v, B1), which determines the decomposition (10).

The right-hand side of the Eq. (9) is the sum of the ve-  Thus, two sets of Egs. (12) and (13) give the second

locities of the pointD when you rotate the pendulum  set of kinematic equations:

(the first term), and the motion of the flow (the second

term). In this case, in the first term, we have the coor- Qy = —Esingy — 1 cos
dinates of the vectodD = {I,0,0} in the coordinate 2= TSN 7.71;;35%5 COS L
SySteleL’lngL'g. 3 = fCOS m=m cos¢ S -

We explain the second term of the right-hand side of
Eqg. (9) in more detail. We have in it the coordinates We see that three sets of the relations (8), (11), and
of the vector(—V,) = {—v,0,0} in the immovable  (14) form the closed system of equations.
space. In order to describe it in the projections on the These three sets of equations include the following
related coordinate systefz;z,x3, we need to make  functions:

a (reverse) rotation of the pendulum at the angi€)

that is algebraically equivalent to multiplying the value Q Q

(—vso) ON the vectoi, (—&, 71). yn (O"ﬁl’ 'UD> » AN (a’ﬁl’vD) , s(a).
Thus, the first set of kinematic equations (9) has the

z1 = Qg cosmy + Q3 sinmno,
z9 = —QQ sin m + Qg COS1)2.

Then we substitute the following relationship instead
of the variablez:

sin &

(14)

following form in our case: In this case, the functior is considered to be depen-
dent only ona, and the functiongy, zy may depend
VP COS & = — s COSE, on, along with the angles, 3,, generally speaking, the
vp sina cos B = (3 + vy sin € cos 0y, (112) reduced angular velocity = [Q/vp.
vp sinasin B = —IQs + Vs sin € sin .

5 Problem on free body motion under assumption

4 Second set of kinematic equations of tracing force

We also need a set of kinematic equations which Parallel to the present problem of the motion of the
relate the angular velocity tensér and coordinates  fixed body, we study the spatial motion of the free ax-
§,11,€,m of the phase space (2) of pendulum studied, ially symmetric rigid body with the frontal plane butt-
i.e., the tangent bundI&.S?{&, 7j1; &, m1 }. end (the circle diskD) in the resistance force fields un-
We draw the reasoning style allowing arbitrary dimen- der the quasi-stationarity conditions [4], [5] with the
sion. The desired equations are obtained from the fol- same model of medium interaction.

lowing two sets of relations. Since the motion of the If (v, o, 3;) are the spherical coordinates of the veloc-
body takes place in a Euclidean spdc® n = 3 for- ity vector of the centeD of disk D lying on the axis
mally, at the beginning, we express the tuple consist- of symmetry of a body§2 = {2, 2, Q3} are the pro-
ing of a phase variable@,, 23, through new variable  jections of its angular velocity on the axes of the co-
21, 22 (from the tuplez). For this, we draw the follow-  ordinate systenDz,z,23 related to the body (in this

ing turn by the angley; : case, the axis of symmettyD coincides with the axis
Dz, = Dz, C is the center of mass), and the axes

0, 2 ) Dz = Dy andDx3 = Dz lie in the hyperplane of the

Q5 =T 2(m) 2 ) (12) disk; I, I, Is = I5, m are characteristics of inertia

and mass, then the dynamical part of the equations of
motion in which the tangent forces of the interaction of

h
where the body with the medium are absent, has the form

cosmy —sinm
T — ) . . .. . .
1,2(m) sinm cosm vcosa — ausina + Qv sin asin G —



Fy

)

—Qzusinacos By + (3 +Q32) =
v sin a.cos 1 + G cos a cos B —
—Blv sin acsin 7 + Q3v cos a—

—Qqusinasin By — 01Qy — oy = 0,
v sinasin 81 + dw cos asin B+

+Bvsinacos B + Qqusinacos B — (15)

—Qovcosa — o Qs + 08y = 0,

119.1 == 0,

. Q
Qs + (I — 1)1 03 = —zn (0451, U) s(a)v?,

. Q
LQs + (I, — 1)1Q2 = yn (04517 v) s(a)v®,

whereF, = —S, S = s(a)v?, 0 = CD, in this
case(0,yn (o, B1,Q2/v), z2n (@, 81, /v)) are the co-
ordinates of the poiniV of application of the force&s
in the coordinate systexzzox3 = Dxyz related to
the body.

The first part of three equations of the system (15) de-
scribe the motion of the center of a mass in the three-
dimensional Euclidean spa&? in the projections on
the coordinate systez;z2x3. And the second part
of three equation of the system (15) is obtained from
the theorem on the change of the angular moment of a
rigid body in the Konig axis.

Thus, the direct produ®' x S? x sa(3) of the three-
dimensional manifold and the Lie algebra3pis the
phase space of sixth-order system (15) of the dynam-
ical equations. Herewith, since the medium influence
force dos not depend on the position of the body in a
plane, the system (15) of the dynamical equati@ns
separated from the system of kinematic equatems
may be studied independently (see also [4], [6]).

5.1 Cyclic first integral
We immediately note that the system (15), by the ex-
isting dynamic symmetry

IQ = -[3; (16)
possesses the cyclic first integral
0, = QY = const a7

In this case, further, we consider the dynamics of our
system at zero level:
QY =o. (18)
5.2 Nonintegrable constraint
If we considera more general probleran the motion
of a body under the action of a certain tracing folce
passing through the center of mass and providing the
fulfillment of the equality
v = const (19)
during the motion (see also [7], [8]), théT). in system
(15) must be replaced b — s(a)v?.
As a result of an appropriate choice of the magnitude
T of the tracing force, we can achieve the fulfillment
of Eg. (19) during the motion. Indeed, if we formally

express the valug by virtue of system (15), we obtain
(for cos a #£ 0):

T=T,(a,1,9Q) = mo(Q% + Q§)+

1 mo sin o
Iy cosa

+yn <0z,ﬁ1, S) cos ﬁl” .

This procedure can be viewed from two standpoints.
First, a transformation of the system has occurred at
the presence of the tracing (control) force in the sys-
tem which provides the corresponding class of motions
(19). Second, we can consider this procedure as a pro-
cedure that allows one to reduce the order of the sys-
tem. Indeed, system (15) generates an independent
fourth-order system of the following form:

+8(O[)’U2 |: |:ZN (aaﬂh SZ) Sinﬂl+

(20)

&u cos acos 31 — Brvsin asin B+
+Q3vcosa — ofly = 0,
dvcosasin 31 + frvsina cos B —
—Qyvcosa+ 0Oy = 0,

IgQg = —2N (a,ﬂl, %) s(a)v?,
Qs = yn (o, B1, 2) s(@)v?,

(21)



where the parameteris supplemented by the constant system:
parameters specified above.

The system (21) is equivalent to the system &= —zm+ %%
X [ZN (a,ﬂl, %) sin 31+

v cos at +yn (o, Br, 2) cos 1],
+vcos a[Q3 cos B1 — Qo sin 1] + Zo = %s(a)x
+o [79'3 cos 81 + Qs sin ﬂl} =0, X [ZN (a, 0O1, %) sin 31+

By v sin a— +yn (a, B, %) cos 3] —
—vcosa[Qycos By + Qg sin B1] + (22) —2 e — %:l(na()yz X
+o [Qg cos By + Qg sin ﬂl} =0, x [zn (a, B1, g) cos ff1— (27)

—yn (o, B1, &) sin By ],

2 )
P cos v ov s(a)
21 _lezsina + _Es(a)+gsinaz2:| x

X [ZN (01751, Q) COs ﬂl_

—YN (v, B1, &) sin By ],

QQ = _%ZN (aaﬁh %) S(Q)a
. 2
QB = %yN (O‘?ﬂlv %) S(Oé).

We introduce new quasi-velocities in our system: fr=z15o + %’% X
x [2n (a, 81, 2) cos Br—
Q . —yn (o, f1, £) sin By] .
<92> =Ti2(51) ( 1) ) (23)
3 22

In the sequel, the dependence on the variables
(o, B1,2/v) must be treated as the composite depen-
dence on(a, f1, z1/v, 22 /v) by virtue of (25).
The uniqueness theorem is violated for system (22)
Ty () (COS B1 —sin 51) . on the manifold (26) for odd in the following sense:

where

sin 31 cos 3 regular phase trajectories of system (27) pass through
almost all points of the manifold (26) for odd and
_ ) intersect the manifold (26) at a right angle, and also
In other words, the following relations there exists a phase trajectory that completely coincides
with the specified point at all time instants. However,
5 0 these trajectories are different since they correspond to
1 2
()= (%)

o (24)  different values of the tracing force.

5.3 Constant velocity of the center of mass
If we considera more general probleran the motion
of a body under the action of a certain tracing folce
21 = Qo cos B1 + Qg sin B, (25) passing through the center of mass and providing the
29 = —Qy sin By + Qs cos fFs. fulfillment of the equality

hold, i.e.,

We can see from (22) that the system cannot be solved V¢ = const (28)

uniquely with respect té,, 5, on the manifold
during the motion Y ¢ is the velocity of the center of
mass), ther#, in system (15) must be replaced by zero
since the nonconservative couple of the forces acts on
the body:T — s(a)v? = 0.

Obviously, we must choose the value of the tracing
forceT as follows:

0 = {(a,81,,93) € R*:

a:gk,kez}. (26)
T =Ty(, 51,9Q) = s(a)v*, T=-S. (29)

Thus, formally speaking, the uniqueness theorem is vi- i i i
olated on manifold (26). Moreover, the indefiniteness | N€ choice (29) of the magnitude of the tracing force
occurs for everk: because of the degeneration of the T is a particular case of the possibility of separation of
spherical coordinate®, a, 3, ), and an obvious viola- an mdependent fourth-order subsystem after a certain
tion of the uniqueness theorem for ofldccurs since  transformation of the system (15).
the first equation of (22) is degenerate for this case.  Indeed, let the following condition hold far
This implies that system (21) outside of the manifold
(26) (and only outside it) is equivalent to the following T="T,(a,p1,Q) =



j <04517 Q) Q;0);
v

(30)

At the beginning, we introduce new quasi-velocities
(23)-(25).

We rewrite the system (15) for the cases (16)—(18) in
the form

0+ 0 (22 4 22) cos a—

b1 sina — z1 cos a—

—I—Zs(a) [zN (a,ﬁh ?) cos 31—

YN <a7/617 SZ) Sin61:| =0.

If we introduce the new dimensionless phase vari-
ables and the differentiation by the formulas
nvZy, k=12 <->=nw<'> n >0 m

const system (31) has the following form:

112

9]
—o—s(a)sina [yN (a,ﬂl, ) cos 31+
.[2 v

+zNn (047 B, SZ) sin 51}

Ty (e, By, %) v? — s(a)v?
m

cos «,

aw + 20 — (22 + 22) sina—

02

—o—s(a) cosa [yN (a,ﬂl, Q) cos 1+
IQ v

Zh =

(31)

. v2 Q
Gy = =
3 IQ@/N (aw@h ’U) S(Oé),

: v? Q
QQ - _TQZN (aaﬁh ’U) S(a)a

U/ :’U\Il(a7517217Z2)7 (32)
o =—Zy+oni(Z7 + Z3)sina+
+—7s(a) cosa lyn (a, B1,m1 Z) cos B+
Ignl
+zn (o, B1,n1Z) sin B1] —
Ty (o, B1,mZ) — s(a) sin @, (33)
mny

s(a)

=7 [1—oniZssinal [yn («, B1,n17Z) cos f1+
271

+zN (a7ﬁ1, ’an) Sinﬁl] —

gacosa

1 +ony1 Zo(Z3 + Z3) cos a—

sin o

g

s(@)

sin o

Zy [zn (o, B1,n1Z) cos 31—

Iong

—yn (o, f1,n1Z) sin 3] —



_Z2T1 (o, B1,mZ) — s(a) oS (34) 6 Case where the moment of nonconservative
mny ' forces is independent of the angular velocity
We take the functiorr 5 as follows (the diskD is

given by the equatiom; y = 0):

1 .
Zi:mm[anlzgslnafl]x 0
' = ToN = R(a)iN, (37)
T3N
x [2n (@, B1,m1Z) cos B1 — yn (v, B1,m1Z) sin 1] +
were
. . . s
+le20?sa +on Z1(Z3 + Z2) cos a— N =1y (§’ﬁ1)
S11 v
(see (10)).
o In our case
— Zys(a)sina[zy (o, B1,n17Z) sin B1+
Iyny
0
iy = | cosfq
+yn (o, B1,n1Z) cos B1] — sin
Thus, the equalitiesoy = R(«)cosfr, sy =
Ty (a, B1,m1Z) — s(a) R(«) sin 51 hold and show that for the_c0n5|dere_d Sys-
-7 " cos @, (35) tem, the moment of the nonconservative forces is inde-
! pendent of the angular velocity (it depends only on the
anglesa, 31).
cos o And so, for the construction of the force field, we use
By = Z1— the pair of dynamical function®(«), s(«); the infor-
Sin &« . . . . -
mation about them is of a qualitative nature. Similarly
to the choice of the Chaplygin analytical functions (see
(@) [1], [2]), we take the dynamical functionsand R as
BRI [2n (v, B1,m17) cos 1 — follows:
Irnq sina
R(a) = Asina, s(a) = Beosa, A, B> 0. (38)
—yn~ (@, B1,m1Z) sin B4], (36)

6.1 Reduced systems

Theorem 1. The simultaneous equations (4), (11),
(14), under conditions (5)—(7), (37), (38) can be re-
duced to the dynamical system on the tangent bundle
(2) of the two-dimensional sphere (1).

(o, Br, 21, Z2) = —oni(Z7 + Z3) cos a+

Indeed, if we introduce the dimensionless parameter
and the differentiation by the formulas

g
+

s(a)sina [yn (o, f1,n12) cos 1+
Iony

AB
be = Ing, nf = ——, <->=nguee <'>, (39)

+zN (Oz,ﬁh’an) sinﬂl]—l— I
then the obtained equations have the following form
_ (b« > 0):
+Tl (057 ﬁla ’I’L]_Z) S(Oé) cos av.
mny

€" 4+ b,& cos € +sin€ cos € — 0P iiféi =0,
We see that the independent fourth-order subsystem " I 1,0 1dcos® €
) . . + b.m} cos € + === = 0.
(33)—(36) can be substituted into the fifth-order system n T cos &+ £ G5 Esing

(32)—(36) and can be considered separately on its own - )
four-dimensional phase space. After the transition from the variables (about the

In particular, if condition (29) holds, then the method Variablesz see (13)) to the variables
of separation of an independent fourth-order subsystem
is also applicable. Wy = —

(40)

Zo — by sin&, wy = —no#vle, (42)

N0Voo



system (40) is equivalent to the system which can be easily reduced to the exact differential

equation
& = —wy — by siné, .
wé:sinfcosf—w%‘;’jg, (42) d(ﬂz-l-ul-i-b*uz—i-l) _o.
wll = wl“&z;ﬁga "
Therefore, Eg. (48) has the first integral
;o cosé ud +u? + bus + 1
nm = wlﬁ’ (43) 2 L o 2 = (Cy = const (49)
on the tangent bundle which in the old variables has the form
T.8*{(w2, w1;¢,m) € R : 01 (w2, w1;€) =
0 < ¢ <, m mod2r} (44) w3 + w} + bows sin € + sin® ¢
= : =C1= (50)
wy sin &

of the two-dimensional sphe®#{(£,7;) € R?: 0 <

¢ <m, m mod2z}.

We see that the independent third-order subsystem = const

(42) (due to cyclicity of the variable;) can be sub-

stituted into the fourth-order system (42), (43) and can Remark 2. We consider system (42) with variable dis-
be cpnsidered separately on its own three-dimensionalsip‘.ﬂiOn with zero mean (see [6], [7]), which becomes
manifold. conservative fob, = 0:

6.2 Complete list of the first integrals

é-/ = —wa,
We turn now to the integration of the desired fourth- I ¢, 2cosé
order system (42), (43) (without any simplifications, wy = sing cosé COZU; sing? (51)

w’l = Wi1wWsz

i.e., in the presence of all coefficients). sing
First, we compare the third-order system (42) with the
nonautonomous second-order system It has two analytical first integrals of the form
dwy sin&cos&—w% cos &/ siné wg + w% =+ SiIng = Cf = Const (52)
& —w2—b, sin § ’ (45)
dw; __ wiwzcos§/sin§
£ T —wa—b.sinf
wy sin§ = C5 = const (53)

Using the substitutionr = sin &, we rewrite system
(45) in the algebraic form:
It is obvious that the ratio of the first integrals (52) and
(53) is also a first integral of system (51). However, for

dwy _ T—wi/T X

dr T Twp—b.r) (46) b, # 0, both functions
dwy _  wiwz/T

dr = —wo—b.T

w3 4 w? + byws sin & 4 sin® & (54)
Further, if we introduce the uniform variables by the
formulaswy, = ux7, k = 1,2, we reduce system (46)

_ and (53) are not first integrals of system (42), but their
to the following form:

ratio (i.e., the ratio of the functions (54) and (53)) is a
first integral of system (42) for arby.
dus _ 1-wdtud bus du _ wwasbu (47)

T ar “uz-b, T ar —uz—b, Later on, we find the obvious form of the additional
first integral of the third-order system (42). For this, at
We compare the second-order system (47) with the the beginning, we transform the invariant relation (49)

nonautonomous first-order equation for uy # 0 as follows:

2 2 2 2
dus 1 —u? +u3 + byus ( b*> < C’l) by + C;
duy 2uiug + byuy (48) 2T ! 4 (55)




We see that the parameters of the given invariant rela-where
tion must satisfy the condition

I / dT‘g
1= )
b2+ C?2—4>0, (56) Vb = r3(rs £ Ch)

(59)

and the phase space of system (42) is stratified into a
family of surfaces defined by Eq. (55).

Thus, by virtue of relation (49), the first equation of
system (47) has the form

ry = /b3 — 4r?.

In the calculation of integral (59), the following three

duy  2(1+ boug +u2) — ClUl(ChUZ) cases are possible.

- = E— L b, > 2.

Ui(Cryuz) = *{Cli\/c’z 4(u3 + byug + 1)},

and the integration constaat; is chosen from condi- V02— 4+ /b3 —13 Ch
: X In + +
tion (56). rg £ C b2 — 4
Therefore, the quadrature for the search of an addi-
tional first integral of system (42) has the form
d 2)d 2 a4 2.2
/ T / u27 67 L . V2 —4— /b3 -2 G|
2,/b2 — 4 r3 £ Ch b2 —4
(60)
A=2(1+bus + u3)— +const
Il b < 2.
—C1{C1 £1/C? — 4(u3 + byuz + 1)}/2. 1 + b?
G \/ ! (v "2 W I = arcsin Cirs + by +const  (61)
4 — b2 bi(rs = C1)
Obviously, the left-hand side up to an additive con-
stant is equal tdn | sin &|. If . b, =2.
b* b2
upy + — =1y, b =7 +Cf — 4, ARl Sl M 62
2T 1, 01 1 1 :FC(’I”3:|:01)+ (62)
then the right-hand side of Eq. (57) has the form When we return to the variable
2 4.2 b..
-3/ T r= 4 (63)
(b2 — 4r2) £ C1 /07 — 413 sing 2
we obtain the final form for the valug:
. b > 2.
+b, / ar: =
(b2 — 4r?) £ C1 /b3 — 4r? I =
1 b? — 4 b. 1 Vb2 —4+2
N RV L I noy 9 fy
2 i 2 N 4 \/b2 a3+ Cy b2 —4




L \/b§—4$2r1$ C
2—4 |\/R2—4r2+C, 24

+
(64)

+-const

I b, < 2.

+ /62— 472 4 b2
! arcsin Ciy/by — 4ry +b1—|— (65)
\/4—b2 bl(\/b%—élr%:ECl)

I =

+const

. b, =2.

2r

1
=¥
Cl(\/b% - 4’/‘% + 01)

I + const (66)

Thus, we have found an additional first integral for the

third-order system (42), i.e., we have a complete set of
first integrals that are transcendental functions of the

phase variables.

Remark 3. In the expression of the found first integral,

we must formally substitute the left-hand side of the

first integral (49) instead of’;.

Then the obtained additional first integral has the fol-
lowing structure similar to the transcendental first inte-
gral from the planar dynamics):

Oz (w2, w13 &) =

w2 Wi

<sin &,

e’ sinf) =Cy=const (67)

Thus, we have already found two independent first in-

tegrals for the integration of the fourth-order system
(42), (43). For its complete integrability, it suffices to
find one additional first integral, which “attaches” Eq.

(43).
Since
dur  ui(2ug +by) dm uy
dr (=b, —uz)T  dr  (=b. —uz)T’
we have
oy b,

dm

Obviously, foru; # 0, the following equality holds:
1 1\’
U2=§ —b*:t\/b%—4<u1—2l)),

b =b2+CF — 4,

then integration of the quadrature

11 + const=

:|:/ du1
Vo=t -9

yields the invariant relation

2(m +C3) =
2 —
= + arcsin ulicl, C'3 = const
Vb2 +CE—4
In other words, the equality
2u1 — Cl

sin[2(m + C3)] = £

V2 +CF -4
holds and, returning to the old variables, we obtain

2wy, — Cysiné

Vb2 +C? —4sin¢’

In principle, in order to obtain an additional invariant
relation that “attaches” Eq. (43), we could stop on the
last equation. In this case, we must formally substitute
the left-hand side of the first integral (49) into the last
expression instead df; .

But we perform some transformations which allow to
obtain the following explicit form of the additional first
integral (in this case, we use Eq. (49)):

sin[2(m + C3)] = £

(u? — u3 — boug — 1)

tg”[2 = .
g7[20m + )] u?(4u + 4b,ug + b2)

Returning to the old coordinates, we obtain an addi-
tional invariant relation of the form

tg®[2(m + C3)] =

_ (w? — w} — bywsysing — sin® £)?

— w2(4w? 4 4b,wasin € 4 b2 sin®€)’




or, finally,

O3(w2, w1;&,m) =

2

2 —wd — bywysiné — sin® € B

w1 (2w2 + b, sin f)

=-n =x %arctgw
(68)

= (3 = const

Therefore, in the considered case, the system of dy-
namical equations (42), (43) has three first integrals
expressing by relations (50), (67), (68), which are the
transcendental functions of its phase variables (in the

sense of the complex analysis) and are expressed as a fi-

nite combination of elementary functions (in this case,
we use the expressions (63)—(66)).

Theorem 4. Three sets of relations (4), (11), (14) un-
der conditions (5)—(7), (37), (38) possess three the first
integrals (the complete set), which are the transcenden-
tal function (in the sense of complex analysis) and are
expressed as a finite combination of elementary func-
tions.

6.3 Topological analogies

Now we present two groups of analogies related to the
system (15), which describes the motion of a free body
in the presence of a tracking force.

The first group of analogiedeals with the case of the

presence the nonintegrable constraint (19) in the sys-

tem. In this case the dynamical part of the motion equa-
tions under certain conditions is reduced to a system
(27).

Under conditions (37), (38) the system (27) has the
form

/

o = —wsy + bsina,
A . 2cosa
wh = sinacosa —wighs, (69)
— COS (¢
Wy = MW
Cos a
/
61 = W1 — 5 (70)
sin ar

if we introduce the dimensionless parameter, the vari-
ables, and the differentiation analogously to (39):

AB

—, 2z = ngvwg, k=1,2, (71)
I

— 2 _
b=ong, ng =

< >=ngv <> .

Theorem 5. System (69), (70) (for the case of a free
body) is equivalent to the system (42), (43) (for the case
of a fixed pendulum).

Indeed, it is sufficient to substitute

5 =, M = 517 b* = —b. (72)

Corollary 6. 1. The angle of attack: and the angle
of sliding 3; for a free body are equivalent to the
angles of a body deviatiof = 0 andn; = v,
respectively, of a fixed pendulum (Fig. 1).

2. The distancer = C' D for a free body corresponds
to the length of a holdelr= O D of a fixed pendu-
lum.

3. The first integrals of the system (69), (70) can
be automatically obtained through the Egs. (50),
(67), (68) after substitutions (72) (see also [8],

[9)):

O (wa, wy; ) =

e

w3 + w? — bws sin « + sin

(73)

w1 sin «

= (C4 = const

04 (wa, wy; ) =

w2 wy

"sina’ sina

- (74)

=G (sina

)

= (Cy = const

04 (w2, w1 a, B1) =

2

2 — w3 4 bwysina — sin® o

(75)

1 w
= —fi£-arct
b1 22 w1 (2wg — bsin )

= (3 = const



The second group of analogideals with the case ofa  Then the problem on explicit form of the desired first
motion with the constant velocity of the center of mass integral reduces to solving of the linear inhomogeneous
of a body, i.e., when the property (28) holds. In this equation:
case the dynamical part of the motion equations under
certain conditions is reduced to a system (32)—(36).

_ _ 772 .2
Then, under conditions (28), (37), (38), (71 — dp _ 2(uz —b)p +26(1 — Ui(Ch,up) — u3)

- 2 2
7,,) the reduced dynamical part of the motion equations 42 1 —buz +uz — Up(Ch, uz) (80)
(system (33)—(36)) has the form of analytical system
. . 1
o = —Zy +b(Z% + Z2)sina + bsin a cos® a, UL(C1,ug) = 3 {01 + \/Cf — 4(u2 — bug + 1)} ,

COS v in this case, an additive constafit can be chosen as
Zh =sinacosa — Zf - + ng(Zl2 + Z22) Ccos ai— follows: v + C? — 4 > 0.

S1n &« .

(76) The last fact means that we can find another transcen-
dental first integral in the explicit form (i.e., as a finite
combination of quadratures). Here, the general solu-
tion of Eg. (80) depends on an arbitrary constant
We omit the calculation, but note that the general solu-
tion of the linear homogeneous equation obtained from

7 = 2,7, c9sa b2 (22 + Z2) cosa— (80) even in the particular cage= C; = 2 has the

sin following solution:

—bZs sin? a cos a,

p=rpo(uz2) = C[y/1— (uz — 1)2 £ 1]x
—bZ, sin? acos a,

cos a 17 /1= (us =12
By = 21—, (77) X exp i (uz — 1) , C' = const
sin o 14 /1 — (ug —1)2

in this case, we choose the constant as follows: . N o
ny = ne. Then the desired additional first integral has the fol-
If the problem on the first integrals of the system (69), lowing s_tru<_:tura| form (which is similar to the transgen-
(70) is solved using Corollary 6, the same problem for dental first integral from the plane-parallel dynamics):
the system (76), (77) can be solved by the following
Theorem 7. - 04 (Z2, Z150) =

At the beginning, we note that one of the first integrals
of the system (76), (77) has the following form (see

[10]):
. Zs 2
=G s = (Cy = cons 81
0Y(Zs, Z1;a) = <51n “sina’ sina) 2 t 6l
in this case, we use the notations and substitutions (79).
22+ 72 — bZysina +sin o Thus, for the integration of the fourth-order system
= 7 o = (78  (76), (77), we have found two independent first inte-
! grals. For the complete its integration, it suffices to find
one (additional) first integral that “attaches” Eq. (77).
The desired first integral can be obtained by the fol-
= (C, = const lowing relation:
Later on, we study an additional first integral of the . 27, — Cysina
third-order system (76) using, in this case, the first inte- sin2(01 + C3)] = + R+ C? —dsina

gral (78). For this we introduce the following notations

and new variables (comp. with [11], [12]):
In principle, in order to obtain an additional invariant

1 relation that “attaches” Eq. (77), we could stop on the
T=sinwo, Z =u,T, k=1,2, p= - (79) last equation. In this case, we must formally substitute



the left-hand side of the first integral (78) into the last
expression instead df; .

But we perform some transformations which allow to
obtain the following final explicit form of the additional
first integral:

04 (Za, Z1;a, 1) =

1 72— 72 4 bZysina — sin? «
—B; &+ ~arctg—t 2
& g Z1(2Z — bsina)

(82)

2

= C3 = const

Theorem 7. Three first integrals (78), (81), (82) of the
system (76), (77) are the transcendental functions of

its own phase variables and are expressed as a finite

combination of elementary functions.

Shamolin M. V. (2003) New integrable cases and fam-
ilies of portraits in the plane and spatial dynamics of
arigid body interacting with a mediurd, Math. Sci.
114 no. 1, pp. 919-975.

Shamolin M. V. (2003) Foundations of differential and
topological diagnostics). Math. Sci. 114, no. 1,
pp. 976-1024.

Shamolin M. V. (2004) Classes of variable dissipation
systems with nonzero mean in the dynamics of a rigid
body,J. Math. Sci. 122, no. 1, pp. 2841-2915.

Shamolin M. V. (2009) On integrability in elementary
functions of certain classes of nonconservative dy-
namical systems]. Math. Sci. 161, no. 5, pp. 734—
778.

Shamolin M. V. (2009) Dynamical systems with vari-
able dissipation: approaches, methods, and applica-
tions,J. Math. Sci. 162, no. 6, pp. 741-908.

Shamolin M. V. (2010) Classification of complete inte-
grability cases in four-dimensional symmetric rigid-
body dynamics in a nonconservative field,Math.
Sci, 165 no. 6, pp. 743-754.

Theorem 8. Three first integrals (78), (81), (82) of the  Trofimov V. V., and Shamolin M. V. (2012) Geomet-

system (76), (77) are equivalent to three first integrals
(73), (74), (75) of the system (69), (70).

Indeed, the couples of the first integrals (78), (73)
and (82), (75) coincides, if we substitube= —b,.
And finally, we need to identify the phase variables
Zy, k = 1,2, for the system (76), (77) with the phase
variableswy, k = 1,2, of the system (69), (70). Be-

cause of their cumbersome character, the similar argu-

ments concerning of the couples of the first integrals
(81), (74), we do not represent.

7 Conclusions

Thus, we have the following topological and mechan-
ical analogies in the sense explained above.

(1) A motion of a fixed physical pendulum on a spher-
ical hinge in a flowing medium (nonconservative force
fields).

(2) A spatial free motion of a rigid body in a noncon-
servative force field under a tracing force (in the pres-
ence of a nonintegrable constraint).

(3) A spatial composite motion of a rigid body rotating
about its center of mass, which moves rectilinearly and
uniformly, in a nonconservative force field.

On more general topological analogues, see also [8],
(91, [12], [13].
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