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  Modern laser technologies enable researchers by super-short laser pulses with 

controllable phase parameters such as carrier-envelope phase (CEP) and chirp of carrier 

frequency. Changing CEP or frequency chirp one can monitor the probability of light-induced 

processes or in other words to control radiative phenomena by phase modulation (phase control).  

 The paper is devoted to theoretical investigation of the phase control during the 

interaction between short laser pulses and simplest systems such as classical harmonic oscillator, 

classic Morse oscillator and two-level quantum system (TLS). We consider two types of exciting 

laser pulses. The first one has the electric field in the form 

( ) ( ) ( )0
22

0 cosexp ϕω +Δ−= tttt EE ,    (1) 
and another one in the form 
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here 0ϕ  is CEP and κ  is frequency chirp.  

 In the first order of the perturbation theory we obtain the following general expression for 

the population of the upper energy state of two-level system excited by laser pulse after it 

termination 
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here  is transition dipole moment, 0d 0ω  is own frequency of TLS,  are relaxation times of 

population and coherency, 

2,1T

( )ωE   is Fourier transform of electric field strength in laser pulse. 

Substituting Fourier transform of electric field strength (1) into formula (3) one can find the following 

expression for population of upper TLS state after the laser pulse termination 
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here t0ωτ = , 000 ωξ Ed= , tΔ= 0ωη , 0ωω=r  are dimensionless parameters of laser pulse 

and TLS and ( )η,rGTS  is excitation spectral line shape of TLS: 
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From expression (4) one can see that the function ( )2sec ηrh  plays the role of phase modulation 

coefficient of TLS excitation by laser pulse (1). This function is represented in fig. 1. 
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Fig. 1. Phase modulation coefficient as a function of dimensionless pulse duration in the perturbation 
theory limit 

From fig. 1 it follows that in the perturbation case CEP control can be achieved only for subcycle 
laser pulses when 2<η . For longer pulses CE phase dependence of population  is negligible.  2N

For chirped pulse excitation one can obtain from (2), (3) the following expression 
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2tΔ= κα  is dimensionless chirp of carrier frequency.  
 For arbitrary values of electric field strength the upper level population of TLS can be 
calculated numerically using the system of equations for Bloch vector : ( )321 ,, RRR=R
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here 0
~ EEE =  is dimensionless field strength and using the relationship 
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Solution of (10) – (12) for laser pulse with controllable CEP (1) is shown in Fig. 2. 
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Fig. 2. Time dependence of upper level population of TLS for strong field excitation and near one-cycle 

laser pulse  

From this figure one can see that upper level population after laser pulse termination can be 
minimized by proper choice of CEP value for short pulse duration and for high enough electric 
filed strength.  
 Figure 3 shows CEP dependences of population  for various values of 2N ξ . 
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Fig. 3. CEP dependence of upper level population after laser pulse termination 

 Dependences of phase modulation coefficient upon the dimensionless pulse duration for 
various values of dimensionless field strength are shown in fig. 4.  
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Fig. 4. Phase modulation coefficient as a function of laser pulse duration 

In this figure the solid line coincides with the result for perturbation theory limit given by formula (4). 
Thus in the range 1.0<ξ  one can use formula (4) to calculate CEP control of TLS excitation by super-
short laser pulse. For higher ξ  values phase modulation coefficient oscillates as a function of pulse 
duration.  
 To analyze the Morse oscillator behavior under the action of strong laser field (1), (2) we solve 
numerically the following equation 
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here xαρ =  is dimensionless oscillator coordinate, α is parameter of Morse potential, 
2
00 ωαγ mEq=   is dimensionless field strength. Fig. 5 shows calculated CEP dependence of 

radiation power after Morse oscillator excitation by laser pulse (1) for one-cycle pulse duration. 
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Fig. 5. CEP dependence of Morse oscillator radiation power after laser pulse excitation 



From fig. 5 one can see that even for one-cycle laser pulses ( 4=η ) CEP control can be achieved 
only for high enough field strength 2.0>γ . In the case of weak electric field strength 1.0<γ  
harmonic approximation is valid for the description of CEP control of Morse oscillator 
excitation. 
 The excitation energy ε  of Morse oscillator under the action of one-cycle laser pulse as a 
function of field strength parameter γ  is shown in fig. 6 for various CEP values ( D  is bound 
energy of Morse oscillator). 
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Fig. 6. Excitation energy of Morse oscillator as a function of dimensionless field strength 

It should be mentioned that for D≥ε  the dissociation of Morse oscillator takes place. Thus 
dissociation may be controlled by monitoring CEP value. From fig. 6 one also can see another 
interesting feature of Morse oscillator phase control, namely, the up-down asymmetry of the 
excitation process ( ) ( )22 00 πϕεπϕε =−≠=  arisen because of the lack of inverse symmetry of 
Morse potential.  
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