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Laboratorio para Biodinámica y Sistemas Alineales
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Summary: In this contribution two results are taken: (1) The synchronization of noiseless Hodgkin-
Huxley (HH) neurons is possible from robust feedback based on Lie algebra approaches and (2) the
fact that, from Lie algebra of vector fields, the generalized synchronization of different (triangular form)
chaotic systems can be used to derive an explicit synchronization function. Both results are extended to
derive the synchronization function in HH neurons despite this systems are not in triangular form. Thus,
the Lie algebra of vectors fields permits to establish a theoretical framework for finding the synchroniza-
tion function in chaotic systems in face they have different model.

Motivation: For several decades many attempts have been addressed to understand the processing
of biological information in single neurons and neural networks. Experimental reports [1] suggest that
the synchronization plays a very important role in the processing of information by large ensembles of
neurons. Recently, it has been demonstrated that a minimal ensemble of two coupled living neurons fire
synchronized spiking activity when depolarized by an external DC current [2]. However, total neural
mechanisms underlying synchronization are not well understood yet. The Hodgkin-Huxley (HH) neurons
are usually used as realistic models of neuronal systems, for studying neuronal synchronization. Some
theoretical approaches investigate the synchronization phenomena considering diffusive coupling and the
influence of intrinsic noise as a promoter of neuronal activity [3], and studying the synchronization
dynamics related to the rhythmic oscillations phenomena (theta and gamma frequency rhythms) in
neurons of localized areas of the brain [4]. In addition, the forcing of HH neurons by external stimulus
has been widely studied [5] for tonic or periodic currents that trigger the action potential displaying spike
activity and refractory dynamics.

The efforts have been focused on the analysis of the time-invariant manifolds related with synchro-
nization [9]-[11]. Two basic approaches have been exploited. On the one hand, chaotic synchronization
has been interpreted as the prediction of the chaotic system, i.e., observability approach. In this sense,
the reconstruction of the drive system attractor from the response system is interpreted as an observer
[11]. An interesting point about observability of the synchronization systems is that differential geometry
allows to find an invariant space under vector fields where the attractor can be reconstructed. Syn-
chronization of chaotic systems, on the other hand, has been also studied from the measurable variables
(system output) [8]-[10]. In such a case, the synchronization is understood as a stabilization problem.
In other words, to compute the control input such that the difference between trajectories of the slave
system xS(t) remains close to the trajectories of the master system xM (t). That is, the point is to find
the invariant space such that the origin of the synchronization error system ‖xM (t) − xS(t)‖ = 0 can
be stabilized. Both observability and controlability of nonlinear systems are included in the geometrical
control theory [13].
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Here, the goal is to provide some remarks on the diffeomorphism between chaotic attractors by ex-
ploiting the Lie algebra of the chaotic systems [12] to compute the synchronization function. In this
contribution, two previous results are taken to study the synchronization between HH neurons: the Lie-
based approach to the generalized synchronization of different systems [14] and the fact that two HH
neurons can be synchronized via robust asymptotic feedback [15] That is, we are interested in the Lie-
based geometric properties of the class of dynamical system given by ẋ = τM (xM ) − τS(xS) − g(x)u,
where x ∈ Rn is, by definition, x := xM − xS , and stands for the state vector of the synchronization
error system; τM : Rn → Rn, τS : Rn → Rn and g : Rn → Rn are smooth vector fields. The product
g(x)u is related to the synchronization command. The scalar function u = u(x) can be computed from
the construction of accessibility spaces, and is named the control input [13]. Thus, we are interested in
finding the output y = λ(x) , λ(xM − xS) of the above-mentioned dynamical system such that synchro-
nization is attained. Thus the synchronization problem is formulated in terms of geometrical properties
of the system along the vector fields τ(x, xM ) = τM (xM )− τS(xS) and g(x) as: what are the geometrical
properties of any synchronization error system such that the scalar function u = u(x) guarantees the
existence of the synchronization (output) function y = λ(x)? Such problem is addressed via Lie algebra
of the vector field related to the synchronization error system.

Main results: The following set of four coupled nonlinear differential equations represents the HH
neuron model [6]:

Cm

dV

dt
= Iext − gKn4 (V − VK) − gNam3h (V − VNa) − gl (V − VNa) , (1)

dPK

dt
= αPK

(V ) (1 − PK) − βPK
(V )PK , (2)

dPNa

dt
= αPNa

(V ) (1 − PNa) − βPNa
(V )PNa, (3)

dINa

dt
= αINa

(V ) (1 − PNa) − βh (V ) INa, (4)

where variables V , PK , PNa and INa represent the membrane potential, the activation of the potassium
flow current, the activation and inactivation of the sodium flow current, respectively. Cm is the membrane
capacitance, gK , gNa and gl are the maximum ionic and leak conductances, while VK , VNa and Vl stand
for the ionic and leak reversal potentials. The external stimulus current can be modeled by the term Iext,
usually a tonic or periodic forcing. The explicit form of the functions αj(V ) and βj(V ) (j = n, m, h) in
Eqs. (2)-(4), and nominal values for the system parameters can be found in [6, 7]. Our starting point is
based on the following facts [13]:

• Fact 1 : Consider an affine nonlinear system ẋ = f(x) + g(x)u; where x ∈ Ω ⊆ Rn, u ∈ R,
g, f : Rn → Rn are smooth vector fields. Besides, let us consider that y = h(x) for any smooth
function h(x). If involutivity condition is satisfied, then the mappings Φ1 : Rn → Rρ, x 7→ z
and Φ2 : Rn → Rn−ρ, x 7→ (z, ν) are such that the affine nonlinear system can be written in the
canonical form

żi = zi+1, i = 1, 2, ..., ρ− 1,

żρ = α(z, ν) + β(z, ν)u, (5)

ν̇ = ζ(z, ν),

and can be derived from Lie derivatives of the output function h(x) along the vector fields f(x)
and g(x) as follows

z = Φ1(x) =









h(x)
Lfh(x)

...

Lρ−1
f h(x)









(6)
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and

ν = Φ2(x) =









φρ+1(x)
φρ+2(x)

...
φn(x)









, (7)

moreover, it is always possible to chose φρ+1, ..., φn in such a way that

Lgφj(x) = 0, ρ + 1 ≤ j ≤ n. (8)

The Fact 1 is well known in nonlinear control theory. Here it is resumed for clarity in presentation
and exploited in neuronal synchronization towards robust feedback synchronization of HH neurons.

• Fact 2 : If exists the map Φ = (Φ1, Φ2) : Rn → Rn, x 7→ (z, ν) derived from (6) and (7), then there
exists the inverse Φ−1(Φ(x)) = x ∈ Ω ⊂ Rn. This fact is proved since h(x), Lfh(x), ..., Lρ−1

f h(x)
and φρ+1(x), ..., φn(x) are linearly independent at any x in the neighborhood U ⊂ Ω ⊆ Rn of the
point x0 in Ω.

Firstly, let us define the state variables by x = (V, PK , PNa, INa) ∈ Ω ⊂ R4. Then, by assuming the
output function is an scalar given by the membrane potential (i.e., h(x) = x1), the dynamical model for
a HH neuron can be written in nonlinear affine form ẋ = f(x) + g(x)u, with

f(x) =













{1/Cm[Iext − gKx4
2 (x1 − VK)

−gNax
3
3x4 (x1 − VNa) − gl (x1 − VNa)]}
αn(x1)(1 − x2) − βn(x1)x2

αm(x1)(1 − x3) − βm(x1)x3

αh(x1)(1 − x4) − βh(x1)x4













, g(x) =









1
0
0
0









, (9)

and the output y = h(x) is given by the membrane potential, i. e., h(x) = x1. By computing the Lie
derivatives of the output function along the vector fields (9), we obtain

z = Φ1(x) = h(x) = x1 (10)

and

ν = Φ2(x) =





φ1(x)
φ2(x)
φ3(x)



 , (11)

where φ1, φ2 and φ3 are solutions of the differential equations given by (8); that is, for this specific case,
we have

∂φj

∂x1
+

∂φj

∂x2
+

∂φj

∂x3
= 0 (12)

where j = 1, 2, 3. If the PDE’s (12) have solution there exists a diffeomorphic function Φ = (Φ1, Φ2)
T :

Ω → R4, x 7→ (z, ν), such that the dynamics of the synchronization error can be written in the form
(5). As matter of fact, a solution for (12) is found for any (φ1, φ2, φ3) 6= (φ1(x1), φ2(x1), φ3(x1)); hence
the function Φ exists. Finally, if there exists a synchronization force u such that the system of the
synchronization error is asymptotically stable, the synchronization function becomes xs = Ψ , Φ−1

S ◦
ΦM (xM ), where subscripts M and S denote the mater and slave neurons, respectively [14]. It should
be noted that, generally speaking, the solution of (5) is not unique. Hence the synchronization function
Ψ : ΩS → ΩS , xM 7→ xS is a smooth vector field whose components φ1, φ2φ3 are exist but can be
uncertain.

In order to show this fact, we consider the following solution: φ(j,k) = xj,k, where j = 2, 3, 4 and
k = M, S. Assuming the output is the membrane potential; i.e., h(x) = x1. Then, the model of the
Master and slacve HH neurons can be transformed into

ż1 = 1/Cm[Iext − gKν4
1 (z1 − VK) − gNaν3

2ν4 (z1 − VNa)

−gl (z1 − VNa)] + u , (13)

ν̇1 = αn (z1) (1 − ν1) − βn (z1) ν1 , (14)

ν̇2 = αm (z1) (1 − ν2) − βm (z1) ν2 , (15)

ν̇3 = αh (z1) (1 − ν3) − βh (z1) ν3 . (16)
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Then, both master and slave neurons are separately transformed and the maps ΦM (xM ) and ΦS(xS) are
derived to get

(

zM

νM

)

=

(

Φ1M (xM )
Φ2M (xM )

)

and

(

zS

νS

)

=

(

Φ1S(xS)
Φ2S(xS)

)

, (17)

from where each HH neuron can be transformed into (5) which implies that there is a driving sig-
nal synchronizing the master behavior onto slave neuron [15]. Then, if stability holds and neurons
are minimum-phase systems, (zS , νS) → (zM , ν∗

S) for t > t0 ≥ 0 and initial conditions (z(0), ν(0)) =
(Φ1(x(0)), Φ2(x(0))) in physical domain. Note that ν∗

S is a stable manifold which can correspond to the
stable manifold of the master neuron ν∗

M . In this case complete synchronization is achieved. In case
ν∗

S 6= ν∗
M , the partial state synchronization is attained [16].

Preliminary conclusions and discussion: The composition Φ−1
S (Φ1(xM ); ν∗

S) = xS ∈ Ω ⊂ Rn,
where Ω denotes the physical domain. In particular, if ν∗

S ≡ ν∗
M for all time t > t0 ≥ 0, where t0 stands

for time of turning on the control, then xS = Φ−1
S (Φ1M (xM ), Φ2M (xM )). Since HH neurons (1)-(4) are

minimum-phase systems, the GS yields the following function xS =
(

h−1
S (hM (xM )), x∗

2S , x∗
3S , x∗

4S)T . It
should be noted that the explicit expression for the synchronization function Ψ depends on the solution
of (12). Then, the partial state synchronization is depicted but a question arises: how can we know
about the geometric or algebraic properties of the synchronization function depends on multiple solution
of (12)? This question is under study and it will be reported elsewhere.
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