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Abstract
We study rotations about mass center of a dumbbell

satellite that moves along the circular orbit in the New-
tonian Central Force Field. Rotations are forced by a
small load coasting along on the cable with ends fixed
in the satellite endpoints. (We call this cable ’a leier’).
We deduce criterion defining the direction of the dumb-
bell upturning in the orbit plane if the satellite initially
is quasi-tangent to the orbit. Moreover, we study the
satellite asymptotic motions consisting of one half-turn
as the manifold dividing the system variables space into
the areas of different motions
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1 Introduction
Studying of the cable-connected systems remains one

of the most interesting topics in the space dynamics
during the last forty years. Hundreds papers concern-
ing different aspects of these systems motion have been
published after the pioneer works [Beletsky,Novikova,
1969; Beletsky, 1969].(See for example the bibliogra-
phy in [Beletsky, levin, 1993; Cosmo, Lorenzini, 1997;
Alpatov et all, 2006; Ivanov, Sitarsky, 1986]) In this
paper we continue to analyse ’the leier system’ that is
some generalization of the classical couple of two par-
ticles jointed by a cable. Using assumptions and results
from [Rodnikov, 2004; Rodnikov, 2006a; Rodnikov,
2006b; Rodnikov, 2006c; Rodnikov, 2008a; Rodnikov,
2008b] we study a dumbbell satellite rotations forced
by a small load (or a cabin) moving along the cable
with ends placed in the satellite endpoints.
It can easily be checked that the cabin sufficiently in-

fluence the dumbbell rotation only if the satellite mo-
tion is the sequense of half-turns (rotations on the an-
gles close to flat) beginning in the vicinity of the ’hor-
izontal’ (tangent to the orbit) equilibrium. Reducing
motion equations near such equilibrium we deduce cri-
terion defining direction of any single half-turn from

this sequence. Factually we construct the surface of
the dumbbell asymptotic motions tending to librations
about the horizontal equilibrium. This surface divide
the problem phase space into areas of left-hand and
right-hand half-turns.
Moreover, we study numerically the manifold of the

satellite asymptotic motion consisting of only one half-
turn in two-dimensional transections of the system
phase space. This manifold allows to allocate areas
of the dumbbell motions of the following four types:
rotation on angle close to complete clockwise, similar
rotation counter-clockwise, rotation consisting of left
half-turn and right half-turn, rotation consisting of right
half-turn and left half-turn.

2 Designations, variables, parameters and motion
equations

We consider a space station consisting of three parti-
clesA1, A2, A3 with massesm1, m2, m3.(figure 1).
A1 andA2 are jointed by a weightless rod of length2c,
i.e. these particles compose a dumbbell. The third par-
ticle (or a cabin)A3 can coast along on a cable of length
2a. The ends of the cable are placed inA1 andA2. We
call such cable ’a leier’. (This Dutch term means the
rope with both fixed ends). We assume the dumbbell
mass centerC describes a circular orbit about attract-
ing centerO1, O1C << a and m3 << m1 + m2.
Restricting to motions in the orbit plane we study the
dumbbell rotations aboutC forced by the cabin. Letϕ
be an angle betweenO1C andA1A2.
It is well known that if the cabin doesn’t influence

the satellite (orm3 = 0) then there exist two types
of the dumbbell steady motions in whichϕ = const.
There are stable ’vertical’ relative equilibriaϕ = 0, π
and unstable ’horizontal’ equilibriaϕ = ±π/2 [Belet-
sky,1966; Beletsky, 1972]. Moreover motion of a
dumbbell on the circular orbit about mass center is sim-
ilar to the motion of the pendulum. So there are rota-
tions about mass center, there are librations about verti-
cal equilibrium and there are asymptotic (or separatrix)
motions tending to the horizontal equilibrium [Belet-
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sky,1966; Beletsky, 1972]. Evidently, the cabin doesn’t
leave the ellipseU of eccentricitye = c/a with foci
in A1 andA2. So we have some generalization of the
classical space tether system suggested for the first time
in [Beletsky,Novikova, 1969; Beletsky, 1969]. (In the
classic case a sounder doesn’t leave a circle with center
in a spacecraft). LetOxy be a coordinate system with
origin in the dumbbell midpointO such thatA1 andA2

belong toOx andOy ⊥ Ox. Note that the cabin influ-
ences the dumbbell rotation only if the cable is tensed
and the cabin moves along the ellipseU boundary. In
this case the cabin coordinates can be represented by
formulaexA3 = a cos γ, yA3 = b sin γ, b =

√
a2 − c2.

Hereγ is eccentric anomaly of the cabin on the ellipse
U .
One of the considered system motion equations has a

form

ϕ′′ + 3/2 sin 2ϕ + κf(ϕ′, ϕ, γ′, γ) = 0,

whereκ = m3(m1 + m2)a2/(4c2m1m2). In our case
κ << 1. By ()′ the derivative w.r.t. dimensionless
timeτ = ωt is designated, hereω is the orbital angular
velocity.
Hence the cabin sufficiently influence the dumbbell

rotation only for the motions in the separatrixϕ′ =
±√3 cos ϕ vicinity with radius of order

√
κ. In this

case we have a sequence of left-hand and right-hand
half-turns of the satellite.

3 Determination of a single half-turn direction
Direction of each half-turn can be determined by the

following criterion. Let ϕ′0, ϕ0, γ
′
0, γ0 be values of

ϕ′, ϕ, γ′, γ in the beginning of the considered half-
turn. Evidently,ϕ′0 is close to zero andϕ0 is close
to ±π/2. (Without loss of generality we can assume
ϕ0 = −π/2 +

√
κψ0). Note that the dumbbell re-

mains in the vicinity of the horizontal equilibrium for
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some values ofϕ′0, ϕ0, γ
′
0, γ0. (Factually, in this case

an asymptotic motion tending to librations about hori-
zontal steady motion takes place.) These values com-
pose a surface that can be represented by formula

z = A(γ′0, γ0) + O(γ), (1)

where z = κ−1/2(
√

3ψ0 + ψ′0) = κ−1(
√

3ϕ0 +√
3π/2 + ϕ′0) and O(κ) ∼ κ as κ → 0 (The sur-

face (1) example fore = 1/3 and m2 = 2m1 is
depicted in figure 2, where the holes correspond to
motions with un-tense cable). This surface divides
the space ofϕ′0, ϕ0, γ

′
0, γ0 into areas of up-turnings

counter-clockwise (z > A) and of up-turnings clock-
wise (z < A).
A(γ′0, γ0) can be expressed through definite integrals.

For instance, ifh = (1 − e2 cos2 γ0)γ′20 − 3(1 −
e2) sin2 γ0 < 0, then

A =
exp

(−√3(T/2± t1)
)

1− exp(−√3T )
·

·
∫ γ1

γ2

[
f−(y) exp

(√
3W (γ2, y)

)
±

±f+(y) exp
(−√3W (γ2, y)

)]
dy±

±
∫ γ1

γ0

f±(y) exp
(
±
√

3W (y, γ0)
)

dy,

whereW (x, y) =
∫ y

x
V (ξ)dξ, T = 2W (γ2, γ1),

t1 = W (γ0, γ1), γ2 = arccos H + πk,
γ1 = π(k + 1)− arccosH,

H =

√
1 +

h

3(1− e2)
,
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V (γ) =

√
1− e2 cos2 γ

h + 3(1− e2) sin2 γ
,

f±(y) = e sin y(µ− e cos y)·

·
( √

1− e2

1− e2 cos2 γ

(
1

V (y)
+ 3V (y) sin2 γ

)
± 2

)
.

Here ’+’ must be chosen ifγ′0 > 0 and ’−’ must be
chosen ifγ′0 < 0. k = 0 if 0 < γ0 < π andk = 1 if
π < γ0 < 2π.

4 Examples of numerical studying for the two first
half-turns

Considered model of the dumbbell motion isn’t in-
tended for a long time intervals. So we can study only a
few first half-turns. Consider only two first half-turns.
There are the following four types of such motions:
a) one turn clockwise on an angle close to complete

(or two right-hand half-turns),
b) the first half-turn clockwise and the second half-

turn counterclockwise,
c) one turn counterclockwise on an angle close to

complete(or two left-hand half-turns),
d) the first half-turn counterclockwise and the second

half-turn clockwise.
Initial points for motions of each type form the area in

the space ofϕ′0, ϕ0, γ
′
0, γ0. Examples forκ = .01, e =

1/3 andm2 = 2m1 of this space transections by two-
dimensional planes are depicted in figures 3-8 (planes
γ0 = 12π/7, ϕ′0 = 0 for figure 3,γ′0 = 3, ϕ′0 = 0
for figure 4,ϕ0 = −π/2, ϕ′0 = 0 for figure 5,γ0 =
−π/2, γ′0 = 0 for figure 6,γ0 = π/2, ϕ0 = −π/2 for
figure 7,γ′0 = 0, ϕ0 = −π/2 for figure 8).
In these figures we use designations
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(Areas e) correspond to the cabin motions inside el-
lipse U ). Note that bounds between a)-b) and c)-d)
areas are a trace of the surface (1). (In this case the
dumbbell ’does not know the direction of rotation’ and
remains ’quasi-horizontal’) The bound between a) and
b) areas corresponds to the dumbbell motions consist-
ing of only one right-hand half-turn (Factually, in this
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case the dumbbell upturn clockwise and then tends to
librations about the ’horizontal’ equilibrium). Simi-
larly, the bound between c) and d) areas corresponds to
the dumbbell motion consisting of only one left-hand
half-turn.
Analyzing transections we can say that if|ϕ′0| or |ϕ0|

rise then ’the slice structure’ (fig.3) decreases, that ’the
petals’ (figures 4,5) is bounded, that the dumbbell ro-
tates for sufficiently big|ϕ′0| or |γ′0| and the dumbbell
librations take place for sufficiently big|φ0|, ’petals’ in
figures 3,7 decrease fore → 0.
This work is supported by Russian Foundation for Ba-

sic Research grants 06-01-00663, 06-01-90505.

5 Conclusion
In this paper the dumbbell satellite rotations forced

by a small cabin on the leier are considered. The cri-
terion for the direction of the dumbbell rotation from
the vicinity of the ’horizontal’ equilibrium is deduced.
Asymptotic dumbbell rotations consisting of one half-
turn are studied numerically as boundaries between the
areas of the satellite motion of four different types.
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