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Abstract
In this paper the problem of 3D beam dynamics simu-

lation in injection systems is considered. Accelerating
electrostatic field is simulated as a result of the solu-
tion of boundary value problem for Laplace equation
by finite difference method. The computation of the
beam field is based on the analytical solution of bound-
ary value problem set for Poisson equation with use of
MPI based parallel computations. High efficiency of
the proposed computational method is shown in the ex-
amples.
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1 Introduction
Currently, linear and circular accelerators, based on

different principles of acceleration of charged particles,
are widely used in various fields. In this regard, the in-
creasing attention has been paid to the problems of de-
signing, creating and optimization the accelerator com-
plexes that provide a formation of precision beams.
Therefore, when developing an accelerator complex

for certain applications, such as linear accelerator with
spatially uniform quadrupole focusing or cyclotron,
the injection system design is of importance, because
it largely determines the output characteristics of the
beam. For the design of such systems it is necessary
to carry out numerical simulation and optimization of
beam dynamics in the electromagnetic fields which ne-
cessitated the development and improvement of math-
ematical models of charged particle beams.
The questions of modeling and optimization of

charged particle beam dynamics in linear accelerators
has been widely discussed in various papers.

In the papers of D.A. Ovsyannikov and his follow-
ers the theory of optimization of charged particle beam
dynamics in linear accelerators, based on the ana-
lytical methods, has been developed [Ovsyannikov,
1990], [Ovsyannikov and Drivotin, 2003], [Ovsyan-
nikov, Ovsyannikov, Antropov and Kozynchenko,
2005], [Ovsyannikov, Ovsyannikov, Svistunov, Durkin
and Vorogushin, 2006], [Ovsyannikov, Ovsyannikov,
Balabanov and Chung, 2009],[Ovsyannikov, 2011],
[Ovsyannikov, 2012], [Ovsyannikov and Altsybeyev,
2013], [Ovsyannikov and Altsybeyev, 2014].
In the papers of O.I. Drivotin and D.A. Ovsyannikov

the self-consistent distributions of charged particle
beams have been studied [Drivotin and Ovsyannikov,
1994], [Drivotin and Ovsyannikov, 1998], [Drivotin
and Ovsyannikov, 1999], [Drivotin and Ovsyannikov,
2004 1], [Drivotin and Ovsyannikov, 2004 2], [Drivotin
and Ovsyannikov, 2006], [Drivotin and Ovsyannikov,
2009].
S.A. Kozynchenko and Yu.A. Svistunov investigated

the problem of modeling, simulation and optimiza-
tion of charged particle beam dynamics in the injec-
tion systems, using numerical methods [Kozynchenko
and Svistunov, 2002], [Kozynchenko and Svistunov,
2006], [Kozynchenko and Svistunov, 2009]. A simu-
lation software package for modeling and optimization
of beam dynamics in injection systems allows to com-
pute the external and internal beam field and beam dy-
namics, using numerical methods and taking into ac-
count the real geometry of the accelerating-focusing
structure [Kozynchenko, 2012], [Kozynchenko, 2014],
[Kozynchenko and Kozynchenko, 2014].
In the paper [Kozynchenko and Ovsyannikov, 2009]

the formulation of the optimization problem of charged
particle beam dynamics in the injection systems allow-
ing the use of numerical optimization techniques is pre-
sented.
In the papers [Ovsyannikov, 2013 1], [Ovsyannikov,

2013 2], [Ovsyannikov, 2014] A.D. Ovsyannikov pro-
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posed the formulation of the optimization problem of
charged particle beam dynamics in the injection sys-
tems that allows the use of analytical methods for opti-
mization.
In the papers of V.A.Kozynchenko the approximate

analytical methods for calculating the Coulomb field
of charged particle beams in linear accelerators are
proposed. These methods are useful in applying to-
gether with analytical techniques of beam dynamics
optimization and allow parallelization [Kozynchenko,
2007], [Kozynchenko, 2012], [Kozynchenko, 2014],
[Kozynchenko and Boyko, 2014].
The issues of the computer simulation of charged

particle beam dynamics were considered by many
authors, including [Bondarev, Durkin, Ivanov, Shu-
makov, Vinogradov, Ovsyannikov and Ovsyannikov,
2001], [Ovsyannikov, Ovsyannikov, Antropov and
Kozynchenko, 2005], [Kozynchenko and Svistunov,
2006], [Kozynchenko, 2012], [Kozynchenko, 2014],
[Kozynchenko and Kozynchenko, 2014].
Under beam dynamics simulation an ensemble of

model particles is usually used for the representation
of the beam (’large’ particle method). For the intense
beam to take into account the Coulomb interaction be-
tween the particles is of great importance. The most
effective numerical methods for charged particle beam
field simulation are based on the solution of bound-
ary value problem for the Poisson equation by the grid
method. However, these methods are not applicable for
beam dynamics optimization with analytical represen-
tation for the internal and external fields in the acceler-
ating structures. Therefore, it seems urgent to develop
mathematical models that admit an analytical represen-
tation for the Coulomb field of charged particles.
In this paper under simulation of charged particle

beam dynamics in the injection system an external ac-
celerating electrostatic field is obtained as a result of
the solution by grid method of boundary value prob-
lem for the Laplace equation, taking into account the
real geometry of the accelerating structure. We use
both numerical and analytical methods for beam field
computation. Numerical method is based on the solu-
tion by finite difference method of the Poisson equation
for the beam field potential with the boundary condi-
tions which take into account the actual geometry of
the accelerating structure. Analytical method for beam
field modeling is presented in the paper [Kozynchenko,
2012], where the beam of charged particles is repre-
sented by a set of annular cylinders. At each cylinder,
the transverse beam charge density is assumed to be
constant, and the longitudinal density is modeled by a
trigonometric polynomial. For each cylinder, the Pois-
son equation is solved analytically with boundary con-
ditions for the potential in the metal tube of a constant
radius. Both longitudinal and transverse components
of the beam field intensity are obtained in the form of
trigonometric polynomials. This model suggests the
possibility of MPI based parallel computations for the
Coulomb field intensity.

The results for beam dynamics simulation in the injec-
tion system using both analytical and numerical meth-
ods for beam field computation are presented in this
paper. We use analytical method together with MPI
based parallel computations for beam field simulation.
Analysis of beam dynamics simulation in the injection
system shows high efficiency of both analytical method
of beam field calculation and MPI based parallel com-
putations.

2 Description of the Beam Dynamics Simulation
Problem for Non-Relativistic Charged Particle
Beam Injection Systems

In this paper we consider the accelerating-focusing
structures consisting of ne round electrodes in the form
of thick disks with given potentials Ue

1 ,...,Ue
ne

.
Following D.A. Ovsyannikov [Ovsyannikov, 1990],

the dynamics of the beam in the external field, tak-
ing into account the beam space charge, is described
by integro–differential equations:



dX
dt = V,

dV
dt = 1

m p
f 1 (t,X, u)+

1
m p

∫
Mt

f2 (t,X, V, ξ) ρ (t, ξ) dξ = f3 (t,X, u) ,

X (t0) = X 0, V (t0) = V 0, (X 0, V 0) ∈M 0,

(1)

∂ρ (t, η)

∂ t
+
∂ρ (t, η)

∂ η
g̃ (t, η, u) + ρ div η g̃ = 0, (2)

ρ (t0, η) = ρ0 (η) . (3)

Here t ∈ [t0, T ] — the independent variable
(time); parameters t0, T are fixed; mp, — the
mass, X(t) = (x, y, z) ∈ R3 — the position,
V (t) = (vx, vy, vz) ∈ R3 — the velocity of a
charged particle, respectively; η = (X,V ) ∈ R6

— the position of the charged particle in the phase
space; u = u (x, y, z) ∈ C2 (G) — potential of
the external field, where G ⊂ R3 — limited and
open set; function f 1 (t,X, u (X)) describes the
force, defined by external field; the choice of the
function f2 (t,X, V, ξ) defines the way of modeling
of the Coulomb interaction of charged particles;
vector-function g̃ (t, η, u) = (V (t) , f3 (t, η, u));
ρ(t, η) — density distribution of particles due to
the system (1); ρ0 (η) — given charge density in
the space M0 at the moment t0, where M0 ⊂ R6

— bounded closed set of non-zero measure; Mt =
{X = X (t,X 0) , V = V (t, V 0) : (X 0, V 0) ∈M0}—
image of the set M0, due to system (1) a the moment
t.
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The potential of the external electrostatic field
u (x, y, z), defined and continuous in Ḡ, is a solution
of the Dirichlet problem for the Laplace equation:

{
∆u (x, y, z) = 0, (x, y, z) ∈G,

u (x, y, z) |ΓG
= u0 (x, y, z) ,

(4)

where ΓG =
∪

k Γk — the boundary of G, composed
of piecewise-smooth curves Γk; u0 (x, y, z) – known
function.

Figure 1. Cross-sections of the electrode system in the planes xz
and yz. Area G within the electrode system is edged by the dot-
ted line. Cross- sections of the electrodes are shown in dark gray.
Ue
1 , ..., U

e
ne

– potentials of the electrodes.

The potential φ (x, y, z) of the beam field, defined and
continuous in G, is a solution of the boundary value
problem for the Poisson equation:

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
=
ρ (x, y, z)

ϵ0
, (x, y, z) ∈ G.

(5)

φ (x, y, z) |ΓG = φ0 (x, y, z) , (6)

where φ0 — known function.
We consider an area G restricted by the dotted line

shown in (Fig. 1). The boundary ΓG (û) =
∪nΓ

i=1 Γi

is defined by endpoints of the curves Γi, such as seg-
ments of straight lines, arcs, etc. The part of curvilinear
boundary of the i - th electrode between the points A
and B, i = 1, ne, consists of curves Γp, p = n5Γ, n

6
Γ,

2 < n5
Γ, n

6
Γ < nΓ − 1 (Fig. 1), in which the boundary

condition (6) will be:

φ (x, y, z) |Γp = Ue
j , j = 1, ne.

In the gaps between the electrodes on the straight sec-
tions of the boundary Γq , located between pointsC and
D (Fig. 1) q = n7Γ, n

8
Γ, 3 < n7

Γ, n
8
Γ < nΓ−2, the con-

dition (6) can be written as follows:

φ (x̂, ŷ, z) |Γq = Ue
i−1 +

(
Ue
i − Ue

i−1

) z − zei−1

zei − zei−1

.

On the sections of the boundary ΓG(û), other than
sections Γp and Γq , the boundary conditions (6) are ex-
pressed as follows:


φ (x, y, ẑ) |Γ1

= υ0,

φ (x̂, ŷ, z) |Γ2 = υ0 + (Ue
1 − υ0)

z−ze
1

ze
2−ze

1
,

φ (x̂, ŷ, z) |ΓnΓ−k
= Ue

ne
− Ue

ne

z−ze
nΓ−k−1

ze
nΓ−k−ze

nΓ−k−1
,

φ (x̂, ŷ, z) |ΓnΓ−k+1
= Ue

ne
,

where υ0 — given value; x̂, ŷ, ẑ are fixed.
Next we consider the solution of the boundary value

problem (5), (6) by the finite difference method. Let
us associate the computational domain G with a set
of discrete points (grid) Ωh, formed by intersection of
the planes parallel to the coordinate axes: x = xi,
y = yj , z = zk, i = 0, nhx, j = 0, nh

y , k = 0, nhz .
The node (i, j, k) with coordinates (xi, yj , zk) is re-
ferred to as an internal node relative to the domain G if
(xi, yj , zk) ∈ G, and as an external one otherwise. Let
us introduce the notations: h1ijk = hxi−1 = xi − xi−1;
h2ijk = hyj−1 = yj − yj−1; h3ijk = hxi = xi+1 − xi;
h4ijk = hyj = yj+1 − yj ; h5ijk = hzk−1 = zk − zk−1;
h6ijk = hzk = zk+1 − zk; h = maxi,j,k{suphrijk}; Ωh

0

— set of internal nodes; Ωh
1 — set of external nodes;

Ωh
Γ — set of boundary points of the grid (points of in-

tersection of coordinate grid lines with the boundary
Γ).
On the set of nodes Ωh we specify a grid function ψ =
{ψ (xi, yj , zk)} = {ψijk} as a set of values, which can
be presented in the form of nh - dimensional vector; nh

— the total number of nodes considered. The boundary
value problem (5), (6) can be written in an operator
form:

Lφ = g, (7)

where L – differential operator defined on
{φ (x, y, z)}.
The differential problem (7) is associated with a dif-

ference boundary value problem, which is equivalent to
a system of linear equations:
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Lhψ = f,

where ψ, f — nh - dimensional vectors whose compo-
nents are defined as values of the grid function at the
grid nodes Ωh; Lh — finite difference operator defined
on the grid functions ψ.
At the given grid, the following seven-point finite dif-

ference approximation to the Poisson equation is con-
sidered:

(Λ7ψ)ijk = ((Λx + Λy + Λz)ψ)ijk = 0, (8)

(Λxψ)ijk = α1 = α2 + α3, (9)

where

α1 =
2ψi−1,j,k

hxi−1

(
hxi−1 + hxi

)− 2ψi,j,k

hxi−1h
x
i

+
2ψi+1,j,k

hxi
(
hxi−1 + hxi

) ,

α2 =

(
∂2ψ

∂x2

)
i

+
hxi − hxi−1

3

(
∂3ψ

∂x3

)
i

,

α3 =
(hxi )

2 − hxi h
x
i−1 +

(
hxi−1

)2
12

(
∂4ψ

∂x4

)
i

+O
(
h3

)
.

Difference operators Λy and Λz are defined similarly
to Λx. The difference equation (8) approximates the
Poisson equation (5) with an error of the first order for
a non-uniform grid, and the second order - on a uni-
form grid. At the nodes near boundary, to construct
the difference analogue of the differential operator on
a uniform or non-uniform grid the nearest points from
Ωh

Γ are used. In this case, a system of difference equa-
tions contains the values of the grid function at all in-
ternal nodes, as well as at the boundary nodes of the
grid, and in the latter case the boundary condition (6)
is approximated exactly:

ψ(xi, yj , zk) = φ0(xi, yj , zk), (xi, yj , zk) ∈ Ωh
Γ.
(10)

The error of approximation of the difference equation
at a node near boundary, as well as the error of the dif-
ference problem (8) – (10), is defined by O(h).

A system of linear equations being equivalent to the
difference boundary value problem can be written as
follows:

Aψ = f,

where ψ = {ψk}, f = {fk} — vectors; k = 1, nh;
A = {akl} — non-singular square matrix of order nh.
General view of a linear iterative method represented

in the form:

ψn+1 = Bnψ
n +Gn, (11)

where Bn = E − HnA — transition matrix from the
n - th to (n + 1) - th iteration(iteration step operator),
H0, H1, H2,... — some sequence of the matrices.
For solving the system of difference equations the suc-

cessive over relaxation (SOR) method can be used. As-
sume that A— symmetric matrix with diagonal block
tridiagonal representation (A = D+M +N , where D
— diagonal matrix , M — lower triangular matrix, and
N — upper triangular matrix). Then the SOR method
is defined as follows:

(D +M) · ψn+1 = ω · f − (N − (1− ω) ·A) · ψn,

where ψn — n - th approximation of the solution (n-
th iteration); ω — relaxation parameter. The solution
is carried out by SOR method when the order of the ψ
components is consistent with the view of the tridiago-
nal matrix A.

3 Mathematical Model of a Cylindrical Beam of
Charged Particles in a Metal Tube

We assume that the beam is unlimited and periodical
in the longitudinal coordinate. Assume also that the
beam is in a coaxial circular metal tube of radius a and
has azimuthal symmetry. To determine the Coulomb
field we consider the beam as a set of annular cylindri-
cal coaxial layers. Each layer is non-uniform in the lon-
gitudinal coordinate and in each cross-section the layer
density is constant. The intensity vector of the beam
Coulomb field is calculated as the sum of the intensity
vectors of each layer:

E =
N∑
i=0

Ei,

where Ei — Coulomb field intensity vector of the i-
th annular layer; N — the number of annular layers,
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zero layer — axial cylindrical layer. This model allows
to take into account both longitudinal and transverse
beam heterogeneity under calculation of its Coulomb
field.
We introduce a cylindrical coordinate system (z, θ, r),

where Oz axis coincides with the axis of symmetry of
the tube. We assume that an annular layer has an az-
imuthal symmetry, i.e. coordinates and velocities of
the particles do not depend on the polar angle θ. We
assume also that the space charge density within an an-
nular cylinder is a periodic function of the longitudi-
nal coordinate z and is a constant in the cross-section.
In this case, the potential φ (z, r) satisfies the Poisson
equation:

1

r

∂

∂r

(
r
∂φ (z, r)

∂r

)
+
∂2φ (z, r)

∂z2
= f (z, r) , (12)

where

f (z, r) = −ρ (z, r)
ε0

,

ρ(z, r) =


0, r ≤ R1,

τ(z)

π(R2
1−R2

2)
, R1 < r ≤ R2,

0, r > R2,

τ (z) — charge of the beam per unit length, and the
boundary conditions


φ (z, a) = 0 ∀z ∈ R,
∂φ(z,r)

∂r |r=0 = 0 ∀z ∈ R,
φ (z, r) = φ (z + L, r) ∀z ∈ R, ∀r ∈ [0, a] ,
∂φ(z,r)

∂z |z=p = ∂φ(z,r)
∂z |z=p+L∀z ∈ R, ∀r ∈ [0, a] .

We assume that functions φ (z, r), ∂φ (z, r)/∂r,
∂φ (z, r)/∂z are continuous at r = R1 and r = R2.
We introduce the notation:

φ (r) =

 η(r), 0 < r ≤ R1,
ν(r), R1 < r ≤ R2,
w(r), R2 < r ≤ a.

Because of the beam periodicity along the longitudi-
nal coordinate, we consider the function f (z, r) as pe-
riodic in zwith period L. For modeling of the func-
tion f (z, r) we introduce on the axis Oz the grid
S =

{
zi = hi, h = L/N, i = 0, N

}
with number of

nodes N . At the nodes of the grid S we define the
function of the beam charge per unit length τ (z) based

on the location of model particles. By formulas (12) we
calculate the value of a function f (z, 0) at the nodes of
the grid S. We model the function f (z, r) by trigono-
metric polynomial whose values at the nodes of the grid
S coincide with the known ones fi = f (zi, 0):

f (z, r) =
1

2
f c0+

M∑
k=1

(f ck (r) cos(ωkz) + fsk (r) sin (ωkz)),

where
ωk = 2πk

L , M = Nz−1
2 ,

f ck (r) =

0, 0 < r ≤ R1,
f ck , R1 < r ≤ R2,
0, R2 < r ≤ a,

fsk (r) =

0, 0 < r ≤ R1,
fsk , R1 < r ≤ R2,
0, R2 < r ≤ a,

f c0 =
2

Nz

Nz−1∑
i=0

fi, (13)

f ck =
2

Nz

Nz−1∑
i=0

fi cos
2πki

Nz
, (14)

fsk =
2

Nz

Nz−1∑
i=0

fi sin
2πki

Nz
. (15)

Then the expressions for the longitudinal and trans-
verse components of the intensity vector of the
Coulomb field of the cylindrical axially symmetric
beam taking into account heterogeneity and periodic-
ity of the charge density in the longitudinal coordinate
will look like:

Ez (z, r) =
M∑
k=1

ωk (u
c
k (r) sinωkz − usk (r) cosωkz),

Er (z, r) = β1 − β2,
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β1 = −1

2

duc0 (r)

dr
,

β2 =

M∑
k=1

(
duck (r)

dr
cosωkz +

dusk (r)

dr
sinωkz

)
,

where the functions uck (r), u
s
k (r),

duc
0(r)
dr ,

duc
k(r)
dr ,

dus
k(r)
dr calculated by the formulas:

uc0 (r) =



β3 + β4, 0 ≤ r ≤ R1,
β5 + β6 + β7, R1 ≤ r ≤ R2,
fc
0

2

(
R2

1 −R3
2

)
ln r

a , R2 ≤ r ≤ a,

β3 =
fc
0

4

(
2
(
R2

1 −R3
2

)
ln R2

a

)
,

β4 =
fc
0

4

(
2R2

1 ln
R1

R2
+R2

2 −R2
1

)
,

β5 = − fc
0 r

2

4 +
R2

1f
c
0

2 ln r,

β6 =
fc
0

4

(
2
(
R2

1 −R3
2

)
ln R2

a

)
,

β7 = − fc
0

4

(
2R2

1 lnR2 +R2
2

)
,

uck (r) =



f ckC3I0 (ωkr) , 0 ≤ r ≤ R1,
β8 + β9 + β10, R1 ≤ r ≤ R2,
β11 + β12, R2 ≤ r ≤ a,
β8 = f ck

1
ω2

k
,

β9 = f ckC1I0 (ωkr) ,
β10 = f ckC2K0 (ωkr) ,
β11 = f ckC5I0 (ωkr) ,
β12 = f ckC6K0 (ωkr) ,

usk (r) =



fskC3I0 (ωkr) , 0 ≤ r ≤ R1,
β13 + β14 + β15, R1 ≤ r ≤ R2,
β16 + β17, R2 ≤ r ≤ a,
β13 = fsk

1
ω2

k
,

β14 = fskC1I0 (ωkr) ,
β15 = fskC2K0 (ωkr) ,
β16 = fskC5I0 (ωkr) ,
β17 = fskC6K0 (ωkr) ,

duc0 (r)

dr
=


, 0, 0 ≤ r ≤ R1,

− fc
0 r
2 +

R2
1f

c
0

2r , R1 ≤ r ≤ R2,
fc
0

2r

(
R2

1 −R3
2

)
, R2 ≤ r ≤ a,

duck (r)

dr
=



f ckωkC3I1 (ωkr) , 0 ≤ r ≤ R1,
β18 + β19, R1 ≤ r ≤ R2,
β20 + β21, R2 ≤ r ≤ a,
β18 = f ckωkC1I1 (ωkr) ,
β19 = f ckωkC2K1 (ωkr) ,
β20 = f ckωkC5I1 (ωkr) ,
β21 = f ckωkC6K1 (ωkr) ,

dusk (r)

dr
=



fskωkC3I1 (ωkr) , 0 ≤ r ≤ R1,
β22 + β23, R1 ≤ r ≤ R2,
β24 + β25, R2 ≤ r ≤ a,
β22 = fskωkC1I1 (ωkr) ,
β23 = fskωkC2K1 (ωkr) ,
β24 = fskωkC5I1 (ωkr) ,
β25 = fskωkC6K1 (ωkr) ,

C2 =


I1(ωkR1)

ω2
k(β26+β27)

,

β26 = K0 (ωkR1) I1 (ωkR1) ,
β27 = K1 (ωkR1) I0 (ωkR1) ,

C1 =



C2
β28−β29

(β30−β31)
− 1

ω2
k(β30−β31)γ

,

β28 = K1(ωkR2)
(I1(ωkR2)K0(ωka)+I0(ωka)K1(ωkR2))

,

β29 = K0(ωkR2)
(I0(ωkR2)K0(ωka)−I0(ωka)K0(ωkR2))

,

β30 = I0(ωkR2)
(I0(ωkR2)K0(ωka)−I0(ωka)K0(ωkR2))

,

β31 = I1(ωkR2)
(I1(ωkR2)K0(ωka)+I0(ωka)K1(ωkR2))

,

γ = I0 (ωkR2)K0 (ωka)− I0 (ωka)K0 (ωkR2) ,

C3 =
C1I1 (ωkR1)− C2K1 (ωkR1)

I1 (ωkR1)
,

C5 =
K0 (ωka) (C1I1 (ωkR2)− C2K1 (ωkR2))

I1 (ωkR2)K0 (ωka) + I0 (ωka)K1 (ωkR2)
,

C6 = C5
I0 (ωka)

K0 (ωka)
,

f c0 , f ck , fsk defined by (13) – (15).

4 On the Use of an Annular Cylinder Model Un-
der Simulation of Beam Dynamics in the Injec-
tion Systems

This section discusses the applicability of the annu-
lar cylinder model, considered in Section 3 of this pa-
per, for the calculation of a beam field in injection sys-
tem performed both with and without the use of par-
allel computing. We consider an injection system of
ions H− for cyclotron consisting of ne = 5 electrodes
with given potentials Ue

1 = 15kV , Ue
2 = 10kV , Ue

3 =
20kV , Ue

4 = 25kV and Ue
5 = 103kV . At the input of

the electrode system, the axially-symmetric beam with
initial energy of 25keV and current of 15mA is consid-
ered. The characteristics of this beam are presented in
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Fig. 2. The beam energy at the injection system output
is 100keV . The H− ion beam in the injection system
is shown in Fig. 3, having 90 percent of particles in-
volved in subsequent acceleration process in cyclotron
(Fig. 4).

Figure 2. Characteristics of an axially-symmetric beam of ions
H− at the outlet of the plasma-surface ion source. (a) the phase
portrait of the beam in the plane xx′, (b) the phase portrait of the
beam in the plane yy′, (c) particles density distribution in the plane
xy.

Figure 3. The cyclotron injection system for axially-symmetric
beams of ionsH−

Figure 4. Characteristics of an axially-symmetric beam of ions
H− at the output of the injection system, shown in Fig. 3. On
the figures (a) and (b) the cyclotron acceptance is shown kneeling
solid ellipse. (a) the phase portrait of the beam in the plane xx′, (b)
the phase portrait of the beam in the plane yy′, (c) particles density
distribution in the plane xy.

We also consider in the injection system, an ensemble
of ions H− is simulated consisting of five ”bunches”
(for taking into account a beam periodicity along the
longitudinal coordinate) and having both a longitudinal
and transverse heterogeneity, as well as an azimuthal
symmetry relative to the symmetry axis Oz (see Fig.

5). In the “bunch” cross-section, the charge density has
a normal distribution.
To test the applicability of the annular cylinder model

the field of considered ensemble of charged particles
has been computed. Some results of comparison of
the longitudinal components of the field of the parti-
cle ensemble acting on the axis of symmetry within the
central bunch are shown in Fig. 6. The calculations
were performed both using an annular cylinder beam
model and by solving the boundary value problem for
the Poisson equation by the finite difference method.
Also the calculations were performed for the longitu-

dinal component of the field of the particle ensemble,
which acts on the axis of symmetry of the infinite cylin-
drical tube of radius a, with a different number of an-
nular cylinders. The results of calculations are shown
in Fig. 7. In this case, we consider an ensemble of
charged particles consisting of one central bunch (see
Fig. 5) having a normal transverse charge density dis-
tribution. It is seen from Fig. 7 that, in case of an
inhomogeneous radial beam and 6 cylinders, the longi-
tudinal field component on the axis of symmetry of the
injection system can increase three-fold as compared
to the same value when using one cylinder, which sub-
stantiates the usage of the annual cylinder model to cal-
culate the beam field in injection systems.

Figure 5. Ensemble of ionsH− in the injection system of a linear
accelerator. The cross-section in xz - plane is shown.

Figure 6. Graphs of the longitudinal component of the field force
of an ensemble of ions H− acting on Oz - axis of system symme-
try. The force obtained through the annular model is shown by red,
black color marks the force obtained by solving the boundary value
problem for the Poisson equation.
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Figure 7. Graphs of the longitudinal component of the field of the
ensemble of ions H− acting on the Oz - axis for various numbers
of annular cylinders.

Table 1. The run time of computing the longitudinal component of
the field of ensemble of ionsH− atOz – axis for various numbers
of annular cylinders.

number of time time

cylinders without with

MPI, sec. MPI, sec.

2 3.272 4.197

4 4.025 1.973

8 5.576 1.037

16 8.687 0.798

32 15.368 0.751

64 28.205 0.690

We investigated a possibility of using parallel com-
puting based on the MPI-1 communication protocol to
simulate a field of the ensemble of ions H−using the
annual cylinder model. Run times of computing the
longitudinal component of the field of the particle en-
semble along Oz - axis both with and without the use
of parallel computing for different numbers of annual
cylinders are shown in Table 1. In the case of paral-
lel computations for the cylinders being involved to a
beam, both fields and forces are calculated in parallel
in separate processes.
Table 1 shows that with increasing the number of

cylinders the run time of calculating the field with par-
allel computing is reduced compared to the run time
without parallelization. This demonstrates the applica-
bility and efficiency of the parallel computation based
on the MPI-1 to calculate the fields of the ensemble of
charged particles in the injection systems using annular
model.
The studies carried out show the suitability of the an-

nular model for calculation of the field of charged par-
ticle ensembles in the injection systems of accelerators.

5 Conclusion
The paper presents the calculations of the internal

Coulomb field of the ensemble of ionsH− in the injec-
tion system using both analytical and numerical meth-
ods for modeling the internal field. Comparison of the
results of calculations using numerical and analytical
modeling techniques shows the effectiveness of the an-
alytical method of calculation in injection systems, in-
cluding the effectiveness of parallelization.
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