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Abstract— We propose a new approach to solving a wide class
of optimization problems which fall into the broad framework
of linear matrix inequalities and semidefinite programming.
This approach based on randomization and cutting hyperplane
ideology also covers robust statements of the problem. The pro-
posed method is easy to implement, and it might be particularly
useful in various aspects of functioning and applications of
quantum computers.

I. INTRODUCTION

Prospective computers based on quantum logic can be
efficiently modelled as a dynamic system subjected to un-
certainty, and the architecture ideology of these quantum
computers (QC) suggests use of stochastic tools to describe
and control their functioning, e.g., see [1]. On the other hand,
such new devices are expected to be especially powerful
when implementing various randomized algorithms of data
processing and structuring, image recognition, clustering, etc.
Also, peculiar to these new tasks are massive arrays of infor-
mation corrupted by exogenous perturbations and subjected
to uncertainty in the model description. In other words, in
the new line of research related to quantum computations,
the development of new stochastic optimization methods and
robust approaches are of great current importance both in op-
timizing the functioning of a QC and solving typical applied
problems for which use of QCs is supposed to be highly
advantageous. This is also in agreement with the recent
results on use of randomized algorithms in computations,
control, and system theory, see [2].

In this note we consider a broad class of optimization
problems of this type and propose a new approach to
dealing with them. The problems under consideration are
formulated in terms of linear matrix inequalities (LMI) and
reduce to optimizing a linear function subjected to these
constraints, referred to as semidefinite programming (SDP).
Many problems in various areas such as optimization, con-
trol, estimation of reachability domains of dynamic systems,
optimal control, to name just a few, are reducible to such a
setup, e.g., see [3].

Our approach is based on estimating the center of grav-
ity xc of convex bodies by means of random walk using the
new notion of boundary oracle. This estimate of xc is then
used in a new modification of the cutting hyperplane method
aimed at reducing the value of the objective function.

Of a particular importance is a generalization of the
method to robust statements of the problem where the
coefficient matrices in the LMI constraints are subjected to
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additive norm-bounded uncertainties. In this case, the robust
boundary oracle is devised and the method appropriately
modifies.

It should be also noted that the random walk algorithm
that we use for estimating the center of gravity is expected
to have an independent interest in the QC-related problems.

In this paper, a description of the approach and its main
components are given, the implementation issues are dis-
cussed and the results of numerical simulations on classes
of test problems are presented. We used the well-know
MATLAB package as the main computational tool.

II. PROBLEM FORMULATION

We concentrate our attention at the following problem:

min cTx s. t. A(x) .= A0 +
n∑

i=1

xiAi ≤ 0, (1)

where c ∈ Rn, Ai ∈ Rm×m, i = 0, . . . , n, are known
symmetric matrices and the notation A ≤ 0 stands for the
negative semidefiniteness of the matrix A, i.e., yTAy ≤ 0
for all y ∈ Rm. The inequality constraint in (1) is referred
to as a linear matrix inequality in the vector variable x, and
the convex set

Dfeas = {x ∈ Rn : A(x) ≤ 0} (2)

is said to be the feasibility domain of the problem.
This is a well-defined constrained convex optimization

problem, which plays a central role in the theory of linear
matrix inequalities [3], and at present there exist efficient
solution methods, e.g., see [4]. This paper is aimed at
developing a new approach based on different ideas using
randomization of the original setup. Generalization of the ap-
proach are also provided; in particular, in robust statements,
where the matrices Ai are uncertain, the problem can as well
be solved using the proposed approach, which is not often
the case with the existing techniques.

III. DESCRIPTION OF THE APPROACH

Assuming that Dfeas is nonempty and bounded, we gener-
ate Nhr points uniformly distributed inside this domain and
take their average x0 as an estimate of its center of gravity. A
specific hyperplane is then drawn through the point x0 to cut
off the “idle” portion of Dfeas thus reducing it to a smaller
set D1. The next step of the method is performed with the
set D1 instead of Dfeas, so that we obtain a sequence of
embedded sets Dk along with the estimates xk for their
centers of gravity and the converging sequence fk = cTxk

estimating the minimum of the objective function.



The structure of the method is schematically presented in
Fig. 1.
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Fig. 1. The basic scheme of the method.

In this section we consider the components of the approach
in more detail and later provide certain heuristics towards
their validity and efficiency.

A. Randomization: Hit-and-Run

With the first component we are aimed at estimating the
center of gravity of the sets Dk. This is performed by means
of a random walk algorithm developed in [5] under the
name Hit-and-Run (HR). This algorithm applies to a bounded
convex body D ∈ Rn and produces a random point z
distributed “approximately” uniformly over D.

Specifically, let z0 be an initial point selected at random
in the interior of D, and let zj be the point obtained at
the jth step of the algorithm. A random direction y ∈ Rn

is generated, for instance, in the form ξ/‖ξ‖2, where ξ
is a Gaussian random vector with zero mean and identity
covariance matrix. The one-dimensional line zj + λy is
considered and the points zj and zj of its intersection with
the boundary of D are computed. The next point zj+1 is
then generated randomly uniformly on the chord [zj , zj ].

Under mild conditions on the choice of initial z0, the
shape of the set D, etc., the HR-algorithm yields a practically
nice approximation to the uniform distribution over D. The
arithmetic mean of the points zj is then adopted as an
estimate of the true center of gravity of D.

Numerous practical aspects of improving the performance
of the HR-algorithm as applied to the sets Dk will be
discussed in the sections to follow.

B. Semidefinite Boundary Oracle

In order to implement the HR-algorithm, the intersection
points of a one-dimensional line with the boundary of the set
Dk should be computed. This leads to the notion of boundary
oracle — a procedure that computes efficiently such points or
reports on the absence of intersections. The boundary oracle

for sets specified by LMIs was proposed in [6]; it is based
on the following lemma.

Lemma 1: Let A < 0 and B = BT, then the minimal
and the maximal values of the parameter λ ∈ R retaining
the negative definiteness of the matrix A + λB are given by

λ =





max
λi<0

λi,

−∞, if all λi > 0;
(3)

and

λ =





min
λi>0

λi,

+∞, if all λi < 0,

(4)

where λi are the generalized eigenvalues of the pair of
matrices A and −B, i.e., Aei = −λiBei.

In the setup of this paper, assume that zi ∈ Dfeas, and y
is a random direction. We have

A(zi + λy) = A(zi) + λ

n∑

i=1

yiAi
.= A + λB,

and using Lemma 1, the desired boundary points of Dfeas

are given by zi = zi + λy and zi = zi + λy. To compute
the boundary points of the current set Dk, it now remains
to account for the extra linear constraint provided by the
hyperplane (see subsection C below), which is immediate.

Strictly speaking, the intersection points can be found
numerically using one-dimensional search. However, this
procedure is to be performed at every step of the HR-
algorithm; hence it may be time consuming. Instead, the
boundary oracle devised requires only the computation of
eigenvalues which is extremely fast and accurate as imple-
mented in MATLAB.

We also note that a similar boundary oracle can be
formulated for other commonly used constraints such as
linear algebraic, quadratic matrix inequalities, etc. In other
words, together with the HR-algorithm, the boundary oracle
concept can be exploited in a wide range of optimization
problems.

C. Cutting Hyperplane

Having an HR-estimate x0 for the center of gravity of the
set D0

.= Dfeas, we proceed by considering the new set

D1 = {x ∈ D0 : cT(x− x0) ≤ 0} ⊂ D0

obtained by cutting off a portion of D0 using the hyperplane

H0 = {x ∈ Rn : cT(x− x0) = 0}
through the point x0. For this convex set D1 in turn,
we perform the HR-algorithm to obtain an estimate x1

for its center of gravity and construct the hyperplane H1

through x1, which defines the set D2 ⊂ D1, etc. As a result,
we obtain a sequence of embedded sets Dk and a sequence of
points xk having the property fk+1 < fk, where fk = cTxk

denotes the value of the objective function at the point xk.



The estimated rate of monotone decrease of the sequence fk

can be deduced from the following result on the measures
of symmetry of convex bodies [8].

Lemma 2: Let D ⊂ Rn be a convex bounded set and
g ∈ D be its center of gravity. Denote by P an arbitrary
(n−1)-dimensional hyperplane through g, and let P1 and P2

be the two hyperplanes supporting to D and parallel to P .
Denote by

r(P ) .=
min{dist(P, P1), dist(P, P2)}
max{dist(P, P1), dist(P, P2)}

the ratio of the distances from P to P1 and P2, respectively.
Then

min
P

r(P ) ≥ 1
n

.

This result immediately applies to our method. Indeed,
with P1 and P being the two hyperplanes through the two
successive points xk and xk+1 as described above, and P2

being the supporting hyperplane through the optimal point
x∗ = arg min cTx, and assuming that the exact value of
the center of gravity is available, we arrive at the following
estimate:

fk+1 − f∗ ≤ κ(fk − f∗), κ =
n

n + 1
, (5)

where f∗ is the optimal value of the objective function. In
other words, the method is expected to have a guaranteed
geometric rate of convergence.

Importantly, this lemma had never been used in optimiza-
tion, in contrast to similar results on the guaranteed volumet-
ric reduction, which are typical to various modifications of
the ellipsoid method.

Note however that direct application of Lemma 2 to the
performance evaluation of the method is complicated by the
fact that the quantity xk obtained as an outcome of the HR-
algorithm is represented by the sum of dependent random
vectors. Hence, the properties of this statistical estimate of
the center of gravity of Dk are hard to establish. As a result,
the approach in its present form lacks severe theoretical
justification, and in this paper we provide an experimental
study of the method.

IV. PRESENCE OF UNCERTAINTY

In practice, the data defining the structure of the problem
are unavoidably corrupted by unknown noise, uncertainty in
the model description, etc. Here we consider the situation
where the matrix coefficients in the linear matrix inequality
in (1) are not known precisely but only to the accuracy of
additive norm-bounded matrix uncertainty. This gives raise to
the robust statement of the SDP problem, and in this section
we propose the appropriate robust modification of the method
described above.

Namely, the matrices Ai are given by

Ai = A0
i + ∆i,

where A0
i are the known nominal values, and the real

symmetric m × m matrix uncertainties ∆i = ∆T
i are not

known but bounded in the spectral norm:

‖∆i‖ ≤ εi, i = 1, . . . n,

where the numbers εi ≥ 0 are given. Such uncertainties
will be referred to as admissible. Respectively, the robustly
feasible domain of the uncertain LMI is defined as

Drob
feas =

{
x ∈ Rn : A(x, ∆) ≤ 0 ∀ admissible ∆

}
,

where it is denoted

A(x, ∆) = A0
0 + ∆0 +

n∑

i=1

xi(A0
i + ∆i).

In the robust statement, the SDP problem (1) is formulated
as the minimization of the same objective function cTx
over the robustly feasible domain. For simplicity, we do not
address the issue of nonemptiness of Drob

feas assuming that
the nominal LMI is feasible and the levels εi of uncertainty
are small enough to guarantee Drob

feas 6= ∅.
For robust statements of the SDP problem, there are only

limited results available in the literature; e.g., see [9]. The
robust modification of the method described above remains
the same as in the original uncertainty-free case with the
only difference that a robust semidefinite oracle should be
developed. This oracle is based on the result in [6] on the
radius of nonsingularity for symmetric matrices, and we
summarize it in the lemma below.

Lemma 3: Let A(x, 0) < 0. For any y ∈ Rn, the maximal
and minimal values of λ retaining the negative definiteness
of the matrix A(x+λy, ∆) for all admissible perturbations ∆
are given by the two solutions λrob, λ

rob
of the nonlinear

equation in the scalar variable λ

∥∥∥
(
A0 +

n∑

i=1

(xi + λyi)Ai

)−1∥∥∥ =
1

ε0 +
n∑

i=1

|xi + λyi| εi

on the interval [λ, λ] (3)–(4).

Similarly to the non-robust statement, this result is inter-
preted to mean that, given a point x ∈ Drob

feas and a direction

y, the points xrob = x + λroby and xrob = x + λ
rob

y
belong to the boundary of the robustly feasible domain. This
makes immediate the implementation of the HR-algorithm
over Drob

k and evaluating the center of gravity.

V. IMPLEMENTATION ISSUES AND THE RESULTS OF
SIMULATIONS

In the experiments, various purifications of the approach
described above were implemented, leading to essential
acceleration of convergence above the guaranteed rate (5)
given by Lemma 2. Attention has been paid to various
modifications of the HR-algorithm, averaging techniques for
computing the center of gravity from the HR-points, selecting
the initial point, stopping rules, etc. We describe some of the
most crucial issues.



Projective step: In the original formulation of the method,
the estimate x̂ of the center of gravity of Dk+1 is adopted
as the next iteration xk+1. Instead, we can perform a “large”
step from the current xk in the direction (x̂ − xk) up to
the boundary of Dk+1, i.e., project the point xk on the
boundary of Dk+1. Assuming that xk and x̂ reasonably well
approximate the respective centers of gravity, this leads to an
acceleration of the method far beyond the guaranteed rate (5).
The desired intersection point xb ∈ ∂Dk+1 is found using
Lemma 1, and the point αxb + (1 − α)xk, 0 ≤ α < 1, is
taken as the next iteration xk+1. The multiplier α serves to
shift the point xb slightly inward the set to guarantee a stable
performance of the HR-algorithm at the next iteration.

Dilation: Typically, as the method approaches the opti-
mum, the sets Dk become “skinny” in the direction c. As
a result, the HR-algorithm exhibits poor performance, i.e.,
it sticks inside certain subdomains of Dk. To avoid such
effects, it is suggested to dilate the set Dk using certain linear
transformation (e.g., see [7]). Namely, having generated Nhr

HR-points zi in the set Dk−1, we compose the covariance
matrix

W =
1

Nhr−1

Nhr∑

i=1

(
zi − ẑ

)(
zi − ẑ

)T
, ẑ =

1
Nhr

Nhr∑

i=1

zi,

which reconstructs the shape of Dk−1 from the available
information. The direction vector for the HR-algorithm is
then taken in the form η = W 1/2ξ, where ξ ∈ Rn is
uniformly distributed on the surface of the unit hypersphere.
In other words, the directions η are generated uniformly on
the ellipsoid which approximates the skinny shape of Dk

(which is supposed to be “similar” to that od Dk−1); this
prevents HR-algorithm of sticking and yields a more accurate
estimate of the center of gravity even for highly shrunk
domains. As a result, the method attains considerably higher
accuracy.

Boundary-biased Hit-and-Run (BBHR): In the original
HR-algorithm, the next point zi+1 is generated uniformly
randomly on the chord [zi, zi], i.e., zi+1 = βzi +(1−β)zi,
where β = rand([0, 1]). In the experiments, we used the
biased version of the HR-algorithm, in which the point zi+1

is chosen non-randomly, closer the boundary of Dk in the
desired direction:

zi+1 = βzi + (1− β)zi, β < 1.

The goal is twofold. First, the subsequent averaging gives
a point x̂BBHR with much smaller variance; this makes the
method numerically more stable and accurate while using
smaller amount of HR-points. Second, the proper choice of
β yields a smaller function value at the current step and
overall acceleration of the method.

Other HR-related issues: One of the important practical
questions relates to the proper choice of the amount Nhr

of HR-points required to produce an accurate approximation
to the uniform distribution on Dk and adequately restore
the center of gravity. In spite of the existing pessimistic

estimates, in practice we could lean on relatively small
sample sizes (clearly, this number grows as the dimension of
the problem increases). For example, Nhr = 20 points were
sufficient in low-dimensional SDP problems with dim x = 2,
while dim x = 50 required 1, 500 to 2, 000 points. In the
implementation we suggest to increase the number Nhr

dynamically if the geometric convergence rate (5) is not
attained at several consecutive iterations.

Another point to mention is that averaging might be
performed not over the whole set of Nhr points but rather
over the “best” half, i.e., those having least values of the
objective function. Also, since Dk+1 ⊂ Dk, economy
sampling schemes can be applied which use those of the
HR-points generated at the previous iteration, which fall into
Dk+1 (so-called reuse techniques).

In all experiments we compared the performance of our
method with the results obtained by the solvesdp routine
in the MATLAB-based SeDuMi Toolbox [10]. This numer-
ically well-balanced procedure implements variants of the
interior-point method for solving SDP problems [4] and may
be considered as a “standard” to compare with. Below, the
output of solvesdp for the optimal value of the objective
function is denoted by f∗ and x∗ stands for the associated
minimizer. The outputs of our method are denoted by f̃ and
x̃. Finally, we denote by κ̃ = (fk− f̃)/(fk−1− f̃) the actual
(observed) convergence rate.

Example 1: To illustrate the basic ideas, we consider a
simple SDP problem with n = 2, where c = (0, 1)T and the
constraints have the form A(x) = A0 + x1A1 + x2A2 with
A0 = −I and randomly generated

A1 =




0.6936 −0.1482 0.2310
−0.1482 0.0301 0.0460

0.2310 0.0460 −0.0833


 ;

A2 =




0.6749 −0.0826 0.0761
−0.0826 −0.1297 0.0236

0.0761 0.0236 0.1653


 .

The 2D set Dfeas is nonempty; its boundary is given in
Fig. 2 below along with the Nhr = 200 points generated by
the conventional HR-algorithm (left) and its boundary-biased
modification with β = 0.5 (right). It is this modification
which was usually used in the experiments. As a practical
recipe, it is suggested to use the value β = 0.9 at the initial
steps and then gradually decrease it to β = 0.5.

For this problem, the solvesdp routine returns f∗ =
−7.11089093408564 as the minimal value of the objective
function.

The behavior of several versions of our method is illus-
trated in Fig. 3, where the values of log10(fk− f̃) are given
(the minimum among f̃ and f∗ is adopted as f̃ ).

Curve 1 represents the performance of the simplest version
where neither projection nor dilation was used, and the
standard HR-algorithm was applied. The obtained function
value f̃ = −7.11088654501861 is accurate to the 5th
decimal digit, and the actual convergence rate κ̃ ≈ 0.57
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Fig. 3. Performance of various versions of the method.

(over the linear part of the curve) is slightly better than the
guaranteed theoretical rate κ = 0.66.

Curve 2 represents the version with projecting, which leads
to essential acceleration (κ̃ ≈ 0.16), while the accuracy
remains the same.

Application of dilation (curve 3) leads to a consider-
ably higher accuracy, which exceeds the one obtained by
solvesdp, namely, f̃ = −7.11089093601219. The con-
vergence rate is approximately the same.

In all the experiments, the standard version of the HR-
algorithm with Nhr = 50 points was used to simulate
the uniform distribution. Increasing Nhr did not lead to
acceleration or increase in accuracy, while decreasing the
number of points destabilizes the performance of the method.

Curve 4 represents the modification of the method where
the boundary-biased Hit-and-Run with β = 0.5 was used.
This curve is seen to almost coincide with curve 3; however,
only Nhr = 20 points were used. The function value
obtained was f̃ = −7.11089093611372.

Finally, using β = 0.8 in the boundary-biased HR ac-
celerates the method (κ̃ ≈ 0.1) at the initial iterations, see
curve 5.

Example 2: In the second set of experiments the method
was tested on SDP problems having large dimensions of the
design vector, n = dim x = 300 and m = dim A = 10.
Typically, the method reproduces 7 to 8 exact decimal digits
for the function value after 15 iterations (averaging in the

HR-algorithm was performed over Nhr = 2, 000 points). The
solvesdp routine typically exhibits slightly lower accuracy
(6 to 7 digits); moreover, sometimes it yields an infeasible
point x∗, i.e. λmax

(
A(x∗)

) ≈ 10−7 > 0.

Example 3: In the third set of experiments, we took n = 10
and m = 100 as the matrix dimension. Using only Nhr =
200 HR-points usually leads to 9 exact digits after 15 to
20 steps, and the actual convergence rate is high, κ̃ ≈ 0.3.
In this example with dim A À dim x, the feasible domain
in the low-dimensional space is defined by a large number
of constraints; this probably explains the fact that we can
manage with a small amount of HR-points in such problems.

Example 4: We also tested the method over worst-case
geometry SDP problems, where the pessimistic guaranteed
rate κ (5) is attained. It can be shown that this worst
case is realized with simplicial-shaped feasible domains.
Accordingly, the matrices Ai were chosen to be diagonal
to yield the following feasible domain:

Dfeas = {x ∈ Rn : ‖x‖1 ≤ 1, xn ≤ 0}.

For dim x = 5, the simplest version of the method (without
dilation and projection and with standard HR-algorithm)
exposed the rate κ̃ ≈ 0.83, which is equal to κ (5).
Respectively, to attain the 10th exact decimal digit, some 110
iterations were needed. Using the accelerating modifications
described above we were able to attain the same accuracy
after 15 to 18 iterations. The same conclusions apply to
the behavior of the method in higher-dimensional problems;
for example, with dim x = 10 we have dim A = 513 (for
such problems Nhr = 200 points have been taken to attain
accuracy 10−10 after 20 iterations).

Interestingly, for feasible domains of such a shape, dilation
is useless, since it affects neither the rate of convergence, nor
the accuracy, which is also confirmed by the experiments.

Example 5: Experiments have been also conducted with
the robust version of the method; they showed reasonable
accuracy and rate of convergence for randomly generated
coefficient matrices Ai. For example, in the perturbed version
of the problem considered in Example 1, the method yields
5 to 6 exact decimal digits after 10 iterations.

The main difference from the non-robust problem is that
a nonlinear equation is to be solved at every step of the
HR-algorithm; see Lemma 3. As a result, every step of the
method requires 5 to 20 times as much cpu time as compared
to the non-robust version (depending on the dimensions of
the SDP problem).

This difference also has a negative effect on the accuracy
of the method. Namely, to solve the nonlinear equation,
the standard MATLAB routine fsolve was used, which
required an initial point as an input parameter. As the method
approaches the optimum, the segment [λrob, λ

rob
] becomes

considerably smaller than the segment [λ, λ], and the initial
point λ (or λ) for the fsolve routine turns out to be a
very poor initial approximation to the solution λrob (λ

rob



respectively). As a result, the estimated endpoints λrob, λ
rob

may fall out the robustly feasible domain Drob
feas.

VI. CONCLUDING REMARKS

We proposed a new randomized approach to solving con-
strained optimization problems of quite a general structure.
Preliminary numerical experiments have shown rather stable
performance and high accuracy of the method, which often
exceeds the one obtained with the known techniques. This
makes us believe that a more accurate numerical implemen-
tation combined with a more sophisticated coding can lead
to a powerful solver which will beat the presently existing
methods.

Randomization concept underlying our approach reduces
the computational burden while keeping the method exact
enough in practical applications. It is therefore believed that
it will be useful in high-dimensional problems as well as
in situations where the data defining the structure of the
problem contain uncertainty.

REFERENCES

[1] O. N. Granichin and S. L. Molodtsov, Development of Hybrid Ultrafast
Computers and System Programming. St. Petersburg: Izdatel’stvo
St. Petersburg. Univ., 2006. (In Russian.)

[2] R. Tempo, G. Calafiore, and F. Dabbene, Randomized Algorithms for
Analysis and Control of Uncertain Systems. London: Springer-Verlag,
2005.

[3] S. P. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix
Inequalities in System and Control Theory. Philadelphia: SIAM, 1994.

[4] Yu. Nesterov and A. Nemirovskii, Interior-point Polynomial Algo-
rithms in Convex Programming. Philadelphia: SIAM, 1994.

[5] R. L. Smith, “Efficient Monte Carlo procedures for generating points
uniformly distributed over bounded regions,” Operations Research,
vol. 32, pp. 1296–1308, 1984.

[6] B. T. Polyak and P. S. Shcherbakov, “The D-decomposition technique
for solving linear matrix inequalities,” Automat. Remote Control,
vol. 67, no. 11, pp. 159–174, 2006. (Transl. from Avtomatika i
Telemekhanika, no. 11, pp. 159–174, 2006.)

[7] D. Bertsimas and S. Vempala, “Solving convex programs by random
walks,” J. ACM, vol. 51, no. 4, pp. 540–556, 2004.
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