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Abstract
It is proposed the essentially new combined models of

friction of rubbed rigid solids under conditions of com-
bined kinematics when besides the sliding and whirling
there is a motion of rolling. A correlation between fric-
tion of rolling and sliding is modelling on the base ex-
perimental investigations from the tyre and railway in-
dustry. In correspondence with these results, the main
influence of the rolling on the force state in the area of
contact consists in the asymmetry of the diagram of the
distribution of the normal contact stresses. This asym-
metry is well described by the linear function with one
coefficient that depends on the direction of motion and
velocity of rolling and it leads to appearance of nonzero
lateral component of the friction force. Under the pro-
posed model of friction are understudied the interrela-
tions between friction force components, torques and
velocities. The model involves the replacement of exact
integral expressions for the net vector and torque of the
dry friction forces, formed with the assumption that
Coulomb's friction law is valid at each point of the con-
tact area, by appropriate Pade approximations. This
approach substantially simplifies the combined dry fric-
tion modeling, making the calculation of double inte-
grals over the contact area unnecessary. Unlike avail-
able models, the model based on the Pade approxima-
tions enables one to account adequately for the relation-
ship between force and kinematical characteristics over
the entire range of angular and linear velocities. The
approximate model preserves all properties of the model
based on the exact integral expressions and correctly
describes the behaviour of the net vector and torque of
the friction forces and their first derivatives at zero and
infinity. Moreover, one does not have even to calculate
the integrals to determine the coefficients of the Pade
approximation. The corresponded coefficients can be
identified from experiments. Consequently, the models
based on Pade approximations may be considered as
reological models of combined dry friction.
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1. Introduction
There are many works in the scientific literature de-

voted to the dry friction, classification of that at the de-
pendence on the aims of investigations can be found
at [Zhuravlev, V.Ph., Kireenkov, A.A., 2005]. At the
most of these publications authors are using the Cou-
lomb model of dry friction supposed that the friction
force at the point of contact is direct opposite the rela-
tive velocities of sliding and it is not depend on the
module of velocity. However, there are many experi-
mental facts about the violation of this law at case when
the rubbed bodies are participated simultaneously in the
translational, whirling and rolling motions. Following
the experimental results from the tyre manufactory in
the work [Svendenius, J. ,2003] was established the
empiric dependence of the distribution of normal con-
tact stresses at area of contact from the velocity of roll-
ing. At the corresponded this dependence the influence
of whirling is shifting of the symmetric form of contact
stresses distribution in the direction of rolling. This shift
is good approximated by the liner function with one
coefficient depended on the direction and value of the
rolling velocity. Asymmetry at distribution of the nor-
mal contact stresses at the case of circle areas of contact
cause the appearance of the component of the friction
force directed on normal to the trajectory of motion.

2. Combined model of friction of rolling and sliding

Construction of combined model of friction of rolling
and sliding is performed at he supposition the validities
of the Coulomb law at the differential form for the
small element of area dS inside of spot of contact, in
correspondence with the differentials of the net vec-
tor dF and torque CdM of the friction forces relatively
the center of contact circle are defined by the formulas
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where f - coefficient of friction, ( , )x yr - radius vec-
tor of the elementary square inside of spot of con-
tact (fig.1), - distribution of normal contact stresses,



v - linear velocity of sliding and  - angle velocity of
whirling of contact spot center.

Figure 1.

Asymmetry at the symmetric distribution of normal
contact stresses ( , )x y , arisen at the non zero velocity
of rolling r , in the rectangular coordinate
system { }xOy , axis x of which is directed alone the
velocity of sliding (fig.1) is described by the following
dependence:
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where R - radius of contact circle,  - axis of rectan-
gular coordinate system directed perpendicularly to the
instantaneous velocity of rolling r (fig. 2), and

rk - dimensionless coefficient the sign of that is de-
pendent on the direction of motion

Figure 2.

Connection of the coordinate systems { }xOy and
{ }O are given by rotate transform on the angle

[0, 2]  that is defined from the values of projec-
tions ,x y  of the instantaneous velocity of rolling r

on the axis x and y (fig. 2):
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Substitution of expressions (3) to the formula (2) gives
dependence of distribution of the normal contact

stresses on the value and direction of rolling velocity:
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Figure 3.
The typical behavior of function (4) for different val-

ues of the rolling coefficient rk at the supposition that
at the absence of rolling distribution of the normal con-
tact stresses (solid line) is described by Hertz low
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is presented at fig.3 by the dash lines.
Integration of the expressions (1) on the spot contact

taking in account the formula (4) gives the exact inte-
gral model of combined friction of sliding and rolling,
that in dimensionless variables: ˆx xR , ˆy yR ,

2ˆˆ ˆˆ̂( , ) ( , )x y x y N R  in supposition that distribution of
contact stress at the absence of rolling has central sym-
metry ( , ) ( )x y r  , has in polar coordinate system
with origin at the center of contact circle
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where F and F are the components of the friction
force directed correspondently on the tangent and nor-
mal to the trajectory of motion, and CM is the torque of
whirling respectively the center of circle area directed
perpendicularly to plane of whirling.

Transition at the model (6) from the consideration of
the connection of the friction of rolling and sliding in
term of projection x and y of the velocity of rolling
to the its absolute value r and to the angle between
direction of rolling and sliding gives the equivalent
form of this model
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One of the distinguish feature of model (6)-(7) is ap-
pearance of none zero component of friction force nor-
mally directed to the trajectory of motion. At the pres-



ence of combined motion of rolling and sliding the net
vector of friction forces is not opposite directed to the
vector of sliding velocity.

At supposition that the distribution of the contact
stresses ( , )x y is play role of density the violation at its
central symmetry defined by the formula (4) leads to
shift of the gravity center of contact circle respectively
the geometric centre in the direction of whirling (along
axe  (fig.2)) on value s , the projections of which to
axes x and y are defined by the formulas:
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The shift of the center of gravity of contact spot, de-
fined by formulas (8) leads to appearance of torque of
rolling rM parallelly directed to the plane of sliding the
projections of that on the directions of the tangent M

and normal M  to the trajectory of motion are defined
by expression:
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Thus the net torque of friction forces at rectangular
coordinate system one axis of that is directed on the
tangent of trajectory of motion is

 , , CM M M M  (10)
Expressions (6)-(7) for torque CM and force compo-

nents ,F F as function of ,u v have several significant

properties detailed investigated in [Kireenkov, A.A.,
2008]. These properties allow simplifying the friction
modeling with the aid of replacing of the exact integral
models (6)-(7) by the approximate models based on the
Pade approximations of corresponded order. This ap-
proach permits to escape the integration over the spot of
contact. In corresponded with results of the
work [Kireenkov, A.A., (2008)] the combined model
friction rolling and sliding of the first order based on the
partial-linear Pade approximation has form:
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The model of the first order (11) is sufficient for the
dynamics investigation, but for more precise qualitative
analysis the model of the second order is required. This
model not only good approximates the exact integral
models (6)-(7) but conserves all their properties such as
behavior of these functions and their first derivatives at
zero and infinity.
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The comparison of the integral model (solid line) and
models of the first (11) (dash-dot line) and the sec-
ond (12) (dash line) for the Hertz distribution of contact
stresses (5) as function of parameter k v u is pre-
sented on the fig.4:

Figure 4.



Models (11)-(12) of combined friction of rolling and
sliding based on the Pade approximations can be con-
sidered as reological models, because there are no re-
quired in solving of real problems to calculate the dou-
ble integrals, defined the coefficients of Pade approxi-
mations. These coefficients can be defined from the
experiments.

3. Hertz case

If the distribution of normal contact stresses obeys the
Hertz law (5), then with the aid of the transfer of the
origin of the coordinate system to the instantaneous
center of the velocities 1O (fig.5) to, possibly, obtain
the precise equations of model in the elementary func-
tions.

Figure 5.

Normal and tangential components of the net vector of
friction forces in the polar coordinate system { , , }1O r 

with the origin in the instantaneous center of velocities
(Fig. 5) being distant behind the geometric center of the
contact area to the value h v kR  in the direction of
normal to the velocity of sliding speed v are defined by
formulas:
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Integration limits in formula (13) depend on the ar-
rangement of the instantaneous center of velocities. If
the instantaneous center of velocities is located inside
the contact area 1k  , then polar angle [0,2 ]  ,
while if out of the area of contact that

* * *[ , ], sin 1R h k      . Interval of the variation

of the dimensionless radius-vector q r R is found
from the conditions of the intersection of polar ray with
the circle of the contact area 1 2[ , ]q q q :
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The distribution of contact stresses, which is obeyed
the Hertz law (13), in the introduced variables takes the
form
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The substitution of expression (15) into formula (13),
taking into account of formulas (14) and location of the
center of instantaneous velocities, defines tangential and
normal force components of friction force as the piece-
wise-continuous functions of the parameter k , which
are smooth at joint point:
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Integrals (16) are calculated in the quadratures
[Kireenkov, A.A., 2008]. The result of integration
represents the tangential and normal component of the
friction force as function of two parameters [0, )k  
and [ 1,1]kr  .

The whirling torque it is calculated on the basis equal-
ity [Zhuravlev, V.Ph., 1998]: C hM M hF   , where

hM is the main torque of friction forces relative to the
instantaneous center of the velocities:
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Integrals (2.22) are also calculated in the elementary
functions. Thus, the transfer of the origin of the coordi-
nate system to the instantaneous center of velocities
makes it possible to construct in the Hertz case the pre-
cise coupled model of the rolling and sliding friction,
represented in the elementary functions. However, the
obtained result is too lengthy and is inconvenient. In
order to use it in the dynamics problems it is necessary
to build, at the beginning, the appropriate Pade ap-
proximations. Consequently, even if it is possible to
accurately integrate the equations of model, the most
effective approach is the using of developed above
models based on direct construction of the Pade’s ap-
proximations.
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