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Abstract
The problem of adaptive tracking of the output vari-

able of a linear stationary plant behind a multiharmonic
signal under conditions of control delay and external dis-
turbances is considered. The state vector of the object is
not available for direct measurements. The reference and
disturbance signal parameters (amplitudes, phases, and
harmonic frequencies) are a priori unknown, and a new
algorithm is proposed to improve the performance of fre-
quency estimation of a multisinusoidal signal. Examples
are given that confirm the relevance of the proposed ap-
proach.
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1 Introduction
In this paper, we propose an algorithm for tracking a

multiharmonic signal for a linear stable system with an
input delay and in the presence of external disturbances.

The problem of adaptive tracking of a reference signal,
or the problem of a servomechanism, has been widely
studied in recent decades. The first results date back to
the 1970s. Some of these solutions were based on the
principle of an internal model, which involves the use of
an autonomous dynamic model excited by initial condi-
tions, the output of which is used to simulate the driv-
ing force or disturbance signal. To achieve the required
goal - to ensure zero steady-state tracking error or com-
plete compensation of external disturbances - this model
is built in a certain way into the control circuit.

To date, a considerable number of algorithms for track-
ing a multisinusoidal signal have been developed. The
use of the identification approach for tracking a mul-
tisinusoidal signal was implemented for linear systems

[Gromov et al., 2016], [Borisov et al., 2017].In [Gerasi-
mov et al., 2019a], an algorithm for tracking a multisinu-
soidal signal by a linear multichannel plant is presented.
The method of direct adaptive control [Gerasimov et al.,
2019b] based on the principle of an internal model can
be used to compensate for an external disturbing action
with a delay.

In the automatic control theory, a system with delay
is an important and urgent problem, the task of control-
ling which has always attracted the attention of many re-
searchers [Olbrot, 1978], [Manitius and Olbrot , 197)],
[Anderson and Spong, 1989], [Vlasov et al., 2019],
[Krstic, 2009], [Krstic and Smyshlyaev, 2008], [Bresch-
Pietri and Krstic, 2009]. The selection of objects with
a delay in a separate class is first of all the complex-
ity of their study in comparison with objects that do not
contain a time delay. A characteristic feature of control
systems for objects with delay is the dependence of the
state of the controlled process on the history and neglect-
ing the influence of delay leads to a deterioration in the
quality of the system.

Compensation an external unknown disturbance is one
of the fundamental and actual problems in the theory of
automatic control. The study of disturbed systems with
delay in the control channel is very important for the
wide-common practical application and implementation
of such systems in various fields.

Compensation of disturbances can be carried out us-
ing methods based on the organization of sliding modes
[Utkin, 1992], [Utkin, 1978], [Bandyopadhyay et al.,
2013]. In the work [Gerasimov et al., 2016], a distur-
bance compensation method is proposed using the inter-
nal model method. In this case, the external disturbance
is considered as the output of an autonomous dynamic
model (disturbance generator). To compensate for such
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a disturbance, the structure of the disturbance generator
transient processes of the object in the process of func-
tioning, as should be appropriately reproduced in con-
trol algorithm, which explains the name of this method.
The use of the identification approach to compensate
for polyharmonic disturbances has been successfully im-
plemented for linear [Pyrkin et al., 2014], [Pyrkin and
Bobtsov, 2015], [Vlasov et al., 2018] and nonlinear sys-
tems [Bobtsov et al., 2011]. In [Wang et al., 2015], an al-
gorithm for controlling the output of a linear multichan-
nel plant is presented.

Developing the results of [Gromov et al.,
2016],[Borisov et al., 2017], this article considers
the problem of tracking a multisinusoidal signal under
conditions of input delay and external disturbances, and
a new algorithm is proposed to improve the performance
of frequency estimation of a multisinusoidal signal.

The rest of this paper is organized as follows. The
problem statement is described in Section 2. The fre-
quency estimation algorithm of the disturbance signal
is developed in Section 3. In Section 4, a predictive
compensation algorithm of a multisine reference signal
is given. In section 5, the computer simulation results
of the proposed algorithms are included to confirm the
efficiency of the approach. The conclusion is given in
Section 6.

2 Problem statement
Consider the LTI system

ẋ(t) = Ax(t) +Bu (t− τ) +Dδ (t) , (1)

y(t) = CTx(t), (2)

e (t) = g (t)− y (t) . (3)

where x ∈ Rn is an unmeasured state vector; u ∈ Rq

is the control signal; y is the controlled variable; A ∈
Rn×n, B ∈ Rn×q, C ∈ Rq×n are the matrices of cor-
responding dimensions; τ is a constant known delay,
δ ∈ Rq is an unmeasured bounded disturbance, e is the
tracking error.

The disturbance δ(t) is represented as

δ (t) =

l∑
j=1

Aδ
j sin

(
ωδ
j t+ φδ

j

)
, (4)

and is the sum of l sinusoids δj (t) with unknown ampli-
tudes Aδ

j , frequencies ωδ
j and phases φδ

j .
The reference signal g(t) is represented as a biased

multisinusoidal signal of the form

g (t) =

k∑
m=1

Ag
m sin (ωg

mt+ φg
m) (5)

and is the sum of k sinusoids gm (t) with unknown am-
plitudes Ag

m, frequencies ωg
m and phases φg

m.
The control objective is to design u(t) such that the

tracking error e(t) is asymptotically converged to zero

lim
t→ ∞

| e ( t ) | = 0. (6)

Take into account the following assumptions.
Assumption 1: Parameters A,B,C,D are known.
Assumption 2: The triple of matrices (A,B,C) is

completely controllable and observable.
Assumption 3: The number of harmonics l, k is

known.
Assumption 4: The known lower frequency limit ω0

for the driving signal g(t) and the disturbing action δ(t)

ωδ
j ≥ ω0, j = {1, 2, . . . , l} ,

ωg
m ≥ ω0,m = {1, 2, . . . , k} .

3 Frequency estimation in finite time
Consider a linear observer of an object of the following

form

˙̂x(t) = Ax̂(t) +Bu (t− τ) , (7)

ŷ(t) = CT x̂(t), (8)

z (t) = ŷ (t) + e (t) . (9)

where x̂ is the state vector of the observer, ŷ is the output
signal of the observer, z is the estimate of the reference
signal.

Consider the output residual

x̃ (t) = x (t)− x̂ (t) , (10)

˙̃x (t) = Ax̃ (t) +Dδ(t), (11)

Taking into account (11) and expressions (10), (3),
rewrite z (t) as

z (t) = ŷ (t) + g (t)− y (t) = g (t)− ỹ (t) ,

z (t) = −Cx̃ (t) + g (t) . (12)

From expression (12) we see that, in the signal z (t), in
addition to the reference signal g (t), there is a perturba-
tion component yδ (t) = Cx̃ (t). Then the signal z (t)
can be represented as

z (t) = g (t)− yδ (t) + ε (t) , (13)
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z (t) =

k∑
m=1

Ag
m sin (ωg

mt+ φg
m)−

−
n∑

i=1

Aδ
i sin

(
ωδ
i t+ φδ

i

)
+ ε (t)

(14)

Rewrite equation (14) as

z (t) =

n∑
i=1

Ai sin (ωit+ φi) (15)

where ε (t) is an exponentially decaying component, the
signal (15) is a multisinusoidal signal with harmonic fre-
quencies ,i = {1, 2, . . . , n}, n = l + k.

As a result, we got the signal z (t), which will be used
further as a carrier of information about the reference
signal that the object must follow. The second step is the
development of an algorithm for estimating the signal
frequency (15).

Consider the signal (15), for n = 1

z (t) = A sin (ωt+ φ) . (16)

Along with the measured signal z(t), consider delayed
signals:

z (t) =

{
z (t− d) , t ≥ d,

0, t < d
(17)

Proposition 1. The signal (16) is described by the rela-
tion [Khac et al., 2022a],[Khac et al., 2022b]

2 cos (ωd) z (t− d)− z (t− 2d) = z (t) , (18)

With n harmonics.
Consider the problem of constructing a regression

model for the general case (15) with n signals.
The general case of a harmonic signal with constant

parameters (15) is defined where is the number of signal.

z (t) =

n∑
i=1

Ai sin (ωit+ φi) . (19)

Signals with multiple delays can be represented by using
this delay operator, as

z (t− d) = Ωz (t) ,

z (t− 2d) = Ω2z (t) ,

...

z (t− 2nd) = Ω2nz (t) ,

Rewrite equation (18) as(
Ω2 − 2Ω + 1

)
z (t) = 0. (20)

where c = cos (ωd), Ω is the delay operators.

Proposition 2. The following relation holds for any
signal z(t) with the sinusoids number n [Khac et al.,
2022a][
Ω2 − 2Ωc1 + 1

]
·...·

[
Ω2 − 2Ωcn + 1

]
z(t) = 0. (21)

where ci = cos (ωid), i = 1, n.
Now we are constructing from (21) the regression

model for the general case as

Ξ (t) = ϕT (t)Θi, (22)

where Ξ ∈ R1 - is a dependent function,
ϕ =

[
ϕ1 ϕ2 ... ϕn

]
∈ Rn - is regressor,

Θ =
[
Θ1 Θ2 ... Θn

]
∈ Rn - is vector of unknown

parameters, or more specifically[
Ω2 + 1

]n
z (t) = Θ1ϕ1 (t)+Θ2ϕ2 (t)+ ...+Θnϕn (t) .

(23)
The Ξ (t) component is obtained using the Newton bino-
mial

Ξ (t) =
[
Ω2 + 1

]n
z(t), (24)

The components of the vector of unknown parameters Θ
are related to ci, i = 1, n by Vieta’s formulas

Θ1 = c1 + c2 + . . .+ cn,

Θ2 = −c1c2 − c1c3 − . . .− cn−1cn,

...

Θn = (−1)
n+1

c1c2 · . . . · cn.

The components of the ϕ (t) regressor are as follows

ϕ1 = 2Ω
[
Ω2 + 1

]n−1
z (t) ,

ϕ2 = 22Ω2
[
Ω2 + 1

]n−2
z (t) ,

...
ϕn = 2nΩnz (t) .

Estimation algorithm.
Parameters estimations of the first order regression

model (22) can be obtained using method DREM ([Ara-
novskiy et al., 2017]).

Applying the delay block υi, i = 1, n− 1 for the
known elements of the regression model (22), then for
(22) we get

Ξ (t− υi) = ϕT (t− υi)Θi. (25)

Denote

χe = ϖeΘi, (26)

where χe =
[
Ξ (t) Ξ (t− υ1) ... Ξ (t− υi)

]T
, ϖe =[

ϕT (t) ϕT (t− υ1) ... ϕ
T (t− υi)

]
.
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Multiplying (26) by adjϖe (t), gives

χi (t) = ∆ (t)Θi, (27)

where ∆(t) = detϖe (t) ∈ R1, χi (t) = adjϖeχe (t) ∈
Rn.

Algorithm for estimating parameters Θi can be pre-
sented as

Θ̂i (t) = −κi∆(t)
(
χi (t)−∆(t) Θ̂i

)
, (28)

where κi is any positive number.
To obtain an estimate in finite time, we replace the es-

timation error Θ̃i (t) by definition with Θi − Θ̂i (t)

Θi − Θ̂i (t) = ΘiW (t)− Θ̂i (0)W (t) , (29)

where Ẇ (t) = −κ∆2 (t)W (t) ,W (0) = 1 or
W (t) = e−κ

∫ t
0
∆2(s)ds.

Express the value of the parameter Θi = Θ̂ft
i (t) ex-

plicitly from the relation (29)

Θ̂ft
i (t) =

Θ̂i (t)−W (t) Θ̂i (0)

1−W (t)
. (30)

Frequency Estimation
To estimate the frequency, use the function arccos (.)

based on the parameter Θ̂ft
i (t) from (30)

ω̂i (t) =
1

d
arccos

(
ĉfti (t)

)
. (31)

4 Adaptive tracking of multisinusoidal signal
Consider a linear filter

ζ(t) =
λ2n

(p+ λ)
2n z (t) , (32)

where (p+ λ)
2n is a Hurwitz polynomial.

From equation (32), ζ (t) is represented as

ζ (t) =

l∑
i=1

ζi (t) + ε1 (t) , (33)

ζa (t) is a harmonic function of time dependent on fre-
quency ωi, ε1 (t) is a function of time decreasing expo-
nentially.

Neglecting the exponentially decaying component
ε1 (t), differentiating (33) 2n times, we obtain

ζ(1) (t) = ζ̇1 (t) + ζ̇2 (t) + · · ·+ ζ̇n (t) ,

ζ(3) (t) = θ1ζ̇1 (t) + θ2ζ̇2 (t) + · · ·+ θnζ̇n (t) ,

...

ζ(2n−1) (t) = θn−1
1 ζ̇1 (t) + θn−1

2 ζ̇2 (t) + · · ·+ θn−1
n ζ̇n (t) ,
(34)



ζ(2) (t) = θ1ζ1 (t) + θ1ζ2 (t) + · · ·+ θlζn (t) ,

ζ(4) (t) = θ21ζ1 (t) + θ22ζ2 (t) + · · ·+ θ2nζn (t) ,

...

ζ(2n) (t) = θn1 ζ1 (t) + θn2 ζ2 (t) + · · ·+ θnnζn (t) ,
(35)

Rewrite (34) and (35) in matrix form
ζ(1) (t)

ζ(2) (t)

...

ζ(2n−1) (t)

 =


1 1 . . . 1
θ1 θ2 . . . θn
...

...
. . .

...
θn−1
1 θn−1

2 . . . θn−1
n



ζ̇1 (t)

ζ̇2 (t)

...

ζ̇n (t)


(36)

ζ(2) (t)

ζ(4) (t)

...

ζ(2n) (t)

 =


θ1 θ2 . . . θl
θ21 θ22 . . . θ2n
...

...
. . .

...
θn1 θn2 . . . θnn



ζ1 (t)

ζ2 (t)

...
ζn (t)

 (37)

From expressions (36) and (37) we have
ζ̇1 (t)

ζ̇2 (t)

...

ζ̇n (t)

 =


1 1 . . . 1
θ1 θ2 . . . θl
...

...
. . .

...
θn−1
1 θn−1

2 . . . θn−1
n


−1


ζ(1) (t)

ζ(2) (t)

...

ζ(2n−1) (t)


(38)


ζ1 (t)

ζ2 (t)

...
ζn (t)

 =


θ1 θ2 . . . θl
θ21 θ22 . . . θ2l
...

...
. . .

...
θn1 θn2 . . . θnn


−1


ζ(2) (t)

ζ(4) (t)

...

ζ(2n) (t)

 (39)

The implemented algorithm for estimating the vari-
ables ζi (t) and ζ̇i (t) takes

ˆ̇
ζ1 (t)

ˆ̇
ζ2 (t)

...
ˆ̇
ζn (t)


=


1 1 . . . 1

θ̂1 θ̂2 . . . θ̂n
...

...
. . .

...
θ̂n−1
1 θ̂n−1

2 . . . θ̂n−1
n


−1


ζ(1) (t)

ζ(2) (t)

...

ζ(2n−1) (t)


(40)

ζ̂1 (t)

ζ̂2 (t)

...

ζ̂n (t)

 =


θ̂1 θ̂2 . . . θ̂n
θ̂21 θ̂22 . . . θ̂2n
...

...
. . .

...
θ̂n1 θ̂n2 . . . θ̂nn


−1


ζ(2) (t)

ζ(4) (t)

...

ζ(2n) (t)

 (41)
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Figure 1. Time diagram of disturbance signal δ (t)

Figure 2. Time diagram of reference signal ω̂ (t)

Figure 3. Time diagram of frequency estimate ω̂i (t)

Figure 4. Time diagram of estimate kdi

Finally, write the control law as

u (t) = −
n∑

i=1

1

L̂i (t)

(
kpi (t) ζ̂i (t) + kdi (t)

̂̇
ζi (t)

)
(42)

where the proportional and differential gains are given
by

kpi (t) = cos (τ ω̂i (t)− µ̂i (t)), (43)

kdi (t) =
sin (τ ω̂i (t)− µ̂i (t))

ηi (t)
. (44)

Estimates of the transmission coefficients L̂i (t) and
phase shifts µ̂i (t) are given by the formulas

L̂i (t) =

∣∣∣∣∣ b (jω̂i (t))λ
2n

a (jω̂i (t)) (jω̂i (t) + λ)
2n

∣∣∣∣∣ , (45)

µ̂i (t) = arg
b (jω̂i (t))λ

2n

a (jω̂i (t)) (jω̂n (t) + λ)
2n . (46)

where j =
√
−1.

5 Simulation
Let us consider the results of numerical simulation il-

lustrating the efficiency of the proposed algorithm for
estimating the frequency of an unbiased harmonic signal
with constant parameters. The simulation was performed
using the MATLAB Simulink software environment.

The control object will be described by differential
equations (1), (2), (3) in which A,B,C,D are A =[
−3 1
−2 0

]
, B =

[
1
1

]
, D =

[
1
1

]
, CT =

[
1
0

]
, τ = 1s.

The perturbing effect has the form

δ (t) = 3 sin (5t+ 3).

The reference signal g (t) has the form

g (t) = sin(2t+ 1) + 2sin(3t+ 2).

Delay parameter for disturbance signal parameterization
d = 0.1s.

DREM algorithm parameters: ν1 = 0.1, ν2 =
0.2, κi = 10000.

The time diagram of the perturbation function δ (t) is
shown in Fig.1.

The time diagram of the perturbation function g (t) is
shown in Fig.2.

On Fig. 3 shows transients for signal frequency esti-
mation

On Fig. 4 shows transients for signals kdi.
On Fig. 5 shows transients for signals kpi.
Figure 6 demonstrates that the tracking error tends to

zero asymptotically.
The results of modeling adaptive stabilization pro-

cesses are shown in Fig. 1 - 6. Analysis of transient
modeling results reveals the ability of the composite sys-
tem to provide an exponential convergence to zero of the
tracking error.



CYBERNETICS AND PHYSICS, VOL. 11, NO. 4, 2022 203

Figure 5. Time diagram of estimate kpi

Figure 6. Time diagram of tracking error e(t)

6 Conclusion
A solution to the problem of adaptive tracking of the

output of a linear plant with a delay in control and in the
presence of a perturbation behind a multisinusoidal sig-
nal with unknown amplitudes, frequencies and phases of
harmonics is presented. The solution of the problem is
based on the use of the indirect control method. A new
approach is proposed to determine the frequencies of a
multisinusoidal signal in finite time, provides rapid con-
vergence to zero of the estimation errors. The proposed
idea can be extended to the case of an object with un-
known parameters and an unknown delay, which is pro-
posed as a direction for further research by the authors.
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