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Abstract
An integral representation for the second variation of

trajectory of a dynamical system under control is ob-
tained. This representation contains some tensor of the
third rank introduced here. A differential equation for
this tensor is presented. A second order method for solu-
tion of the optimal control problem based on the second
variation of a trajectory is proposed.
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1 Introduction
The article deals with an optimal control problem with

a fixed endpoint. The optimal control problem can be
formulated as follows. Consider a controlled dynamical
system

dx

dt
= f(t, x, u), x(t0) = x0, x(t) ∈ Ω ⊂ Rn, (1)

where t ∈ [t0, T ], u = u(t) is vector control function
belonging to some class of functions, for example, to the
class of piecewise continuous functions taking values in
some set: u(t) ∈ U ⊂ Rk. Here and further, assume
that the region of admissible states of the system Ω and
function f(t, x, u) are such that solution of the Cauchy
problem (1) uniquely exists in all cases under consider-
ation.

Without loss of generality, consider the Mayer problem
of the optimal control, as the Lagrange and the Bolza
problems can be reduced to the Mayer problem by in-
troducing an additional dynamic variable [Pontryagin et
al., 1962]. Assume that the function f(t, x, u) is twice
continuously differentiable over x and u.
The Mayer problem consists in finding a control u(t)

providing minimal value for a cost functional depending
on x(T ) :

min
u

Φ(u), Φ(u) = g(x(T )). (2)

The optimal control theory is closely related to the cal-
culus of variations, from which it originates. For exam-
ple, the principle of stationary action for a moving parti-
cle can be formulated as an optimal control problem, if
the action is regarded as a cost functional, and the par-
ticle velocity is regarded as a control. In both of these
areas, the first variation of trajectory of a dynamical sys-
tem is commonly considered in many problems.
Particularly, various variational methods are developed

for finding solution of an optimal control problem [Pyt-
lak, 1999]. These methods use the first variation of the
trajectory or the conjugate momentum Ψ(t) satisfying to
the equation

dΨ

dt
= −Ψ

∂f

∂x
, (3)

which is adjoint to the equation for the first variation,
and to the final condition

ψ(T ) = −∂g
∂x
. (4)
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Orders of these methods are defined by orders of vari-
ation of the cost functional. If the first variation of the
cost functional is taken into account only, such method
is regarded as a first order methods. A method account-
ing also the second variation of the cost functional is a
second order method.
The commonly used expression for the second varia-

tion of the cost functional [Longmuir and Bohn, 1969;
Gabasov and Kirillova, 1973; Miele, 1975; Golfetto and
Silva, 2012] contains the first variation of the trajectory
δx and the variation of the control function δu:

δ2Φ =
1

2

[
δxT

∂2g

∂x2
δx−

∫ T

t0

(
δxT

∂2H

∂x2
δx+

2δxT
∂2H

∂x∂u
δu+ δuT

∂2H

∂u2
δu

)
dt

]
. (5)

Here index T denotes trabsposition, and H = Ψf. Here
and further, we assume that the function g(x) in the ex-
pression (2) is twice continuously differentiable.
When the control function is parametrized, this ex-

pression allows to find second derivations of the cost
functional over the parameters used in process of com-
puting of numerical solution. The second derivatives
can be expressed through so the called ’matrix mo-
menta’ [Gabasov and Kirillova, 1973; Gorbunov and
Lutoshkin, 2004], firstly introduced by G. Gabasov and
F.M. Kirillova [Gabasov and Kirillova, 1973] for degen-
erate problems of optimal control. The matrix momenta
represent components of some matrix satisfying to a cor-
responding boundary problems. Number of the bound-
ary problems for the matrix momenta to be solved nu-
merically is quadratic over number of the parameters.
So far, in problems with a great number of parameters
such approach is unrealizable.
Therefore, it is reasonable try to use another expres-

sion for the second variation of the cost functional. In
this article, we offer a new approach, where the second
variation of the cost functional depends on the second
variation of the trajectory.
The main goals of this article is analysis of the second

variation of the trajectory and application of it in numer-
ical methods of finding solutions for the optimal control
problem.
The second variation of the trajectory is considered in

the next section. Differential equation for the second
variation is written. An integral representation for solu-
tion of this equation is obtained. The integral representa-
tion includes some tensor of the third rank and the Green
function of differential equation for the first variation of
the trajectory.

In the last section, a new method for numerical solution
of the optimal control problem based on expression for
the second variation of the cost functional including the
second variation the trajectory is presented.

2 Second Variation of Trajectory
Let initial conditions or control function values are

changed by small values of an order O(λ), where λ is
small number. Assume that the disturbed solution can
be represented in the form

x = x+ δx+ δ2x+O(λ3), (6)

where x is solution of the undisturbed equation (1), δx
is linear in λ, and δ2x is quadratic in λ. Let us call δ2x
the second variation of the trajectory. We have

f(t, x, u+δu) = f(t, x, u)+
∂f

∂x
(δx+δ2x)+

1

2

∂2f

∂x2
δx2+

+
∂f

∂u
δu+

1

2

∂2f

∂u2
δu2 +

∂2f

∂x∂u
δxδu+O(λ3). (7)

Let us explain meaning of the notation used here and
further. Consider the terms containing second deriva-
tives of f. These terms represent tensors of the third
rank. As polylinear forms, they have two arguments
which are vectors, and one argument which is covec-
tor belonging to the conjugate space. Commonly, argu-
ments from the conjugate space are being written on the
left, and vector arguments consecutive on the right with-
out separation by the comma. We will continue this tra-
dition. For shortness, let denote two equal arguments by
a square of one argument. For example, δx2 should be
regarded as δxδx. Besides, to emphasize that some ex-
pression is a vector argument, we will place it in paren-
theses if it consists from several cofactors. Such form
of notation allows to reduce bulkiness of the following
expressions.
Further, terms in right hand side of (7) contain ten-

sor convolution over corresponding upper and lower in-
dices:

(
∂f

∂x
δx)k =

n∑
i=1

∂fk

∂xi
δxi,

(
∂2f

∂x2
δx2)k =

n∑
i=1

n∑
j=1

∂2fk

∂xi∂xj
δxiδxj ,
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(
∂f

∂u
δu)k =

n∑
i=1

n∑
j=1

∂fk

∂ui
δui,

(
∂2f

∂u2
δu2)k =

n∑
i=1

n∑
j=1

∂2fk

∂ui∂uj
δuiδuj ,

(
∂2f

∂x∂u
δxδu)k =

n∑
i=1

n∑
j=1

∂2fk

∂xi∂uj
δxiδuj .

Upper and low indices are regarded as contravariant and
covariant indices correspondingly. Further we will fol-
low to the Einstein summation convention according to
which summation is meant over all allowed values of
repeated upper and lower indices.
Substituting (6) and (7) into the equation (1) and equat-

ing terms of the first and of the second order in both side
of this equation separately, we obtain two equations for
terms of these orders:

dδx

dt
=
∂f

∂x
δx+ δuf, (8)

dδ2x

dt
=
∂f

∂x
δ2x+

1

2

∂2f

∂x2
(δx)2+δu(

∂f

∂x
)δx+δ2uf. (9)

Here

δuf =
∂f

∂u
δu, δ2uf =

1

2

∂2f

∂u2
(δu)2, δu

∂f

∂x
=

∂2f

∂x∂u
δu.

Solution of the linear nonuniform equation (8) can be
written in the form

δx(t) =

t∫
t0

G(t, t′)δuf(t
′) dt′, (10)

where G(t, t′) is the Green function satisfying to the
equations

∂G(t, t′)

∂t
=
∂f

∂x
(t)G(t, t′), (11)

∂G(t, t′)

∂t′
= −G(t, t′)∂f

∂x
(t′), (12)

and to the condition G(t, t) = E. Here, E is the tensor
which components forms the identity matrix:

Ei
j = δij (13)

and δij are Kronecker symbols.
The equation (9) is also linear uniform equation for
δ2x. Therefore, its solution can be written in the form

δ2x(t) =

t∫
t0

G(t, t′){1
2

∂2f

∂x2
(t′)(δx(t′))2+

+δu
∂f

∂x
(t′)δx(t′) + δ2uf(t

′)} dt′ =

=
1

2

t∫
t0

G(t, t′)
∂2f

∂x2
(t′)
[ t′∫
t0

G(t′, t′′)δuf(t
′′) dt′′

]2
dt′+

+

t∫
t0

G(t, t′)
[
δu
∂f

∂x
(t′)

t′∫
t0

G(t′, t′′)δuf(t
′′) dt′′+

+δ2uf(t
′)
]
dt′. (14)

Consider first term of the expression (14). It describes
effect of interaction of two linear deviation of the solu-
tion due to nonlinearity of the equation (1). It results in
appearing of a term of the second order. Write it in the
form

1

2

t∫
t0

G(t, t′)
∂2f

∂x2
(t′)
[ t′∫
t0

G(t′, t′′)δuf(t
′′) dt′′

]
×

×
[ t′∫
t0

G(t′, t′′′)δuf(t
′′′) dt′′′

]
dt′. (15)

Integration in (15) is fulfilled over the domain

t′ ∈ [t0, t], t′′, t′′′ ∈ [t0, t
′].
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Changing the order of integrations, write the expression
(15) in the form

1

2

t∫
t0

dt′′
t∫

t0

dt′′′
t∫

max(t′′,t′′′)

{
G(t, t′)

∂2f

∂x2
(t′)×

×
[
G(t′, t′′)δuf(t

′′)
][
G(t′, t′′′)δuf(t

′′′)
]}
dt′. (16)

Denote the integrand in the expression (16) by
F (t′, t′′) :

F (t′′, t′′′) =

t∫
max(t′′,t′′′)

G(t, t′)
∂2f

∂x2
(t′)
[
G(t′, t′′)×

×δuf(t′′)
][
G(t′, t′′′)δuf(t

′′′)
]
dt′. (17)

It is obviously that

F (t′′, t′′′) = F (t′′′, t′′). (18)

Therefore, integral of F (t′′, t′′′) over domain t′′, t′′′ ∈
[t0, t

′] is equal to the double integral over any of the
triangles: t′′, t′′′ ∈ [t0, t

′], t′′ < t′′′ or t′′, t′′′ ∈
[t0, t

′], t′′ > t′′′. Let t′′ > t′′′. Then the expression (16)
can be written in the form

t∫
t0

dt′′
t′′∫

t0

dt′′′
t∫

t′′

G(t, t′)
∂2f

∂x2
(t′)
[
G(t′, t′′)δuf(t

′′)
]
×

×
[
G(t′, t′′′)δuf(t

′′′)
]
dt′. (19)

Taking into account that G(t′, t′′) =
G(t′, t′′′)G(t′′′, t′′), rewrite this expression in the
form

t∫
t0

dt′′
t′′∫

t0

dt′′′
t∫

t′′

G(t, t′)
∂2f

∂x2
(t′)
[
G(t′, t′′)δuf(t

′′)
]
×

×
[
G(t′, t′′)G(t′′, t′′′)δuf(t

′′′)
]
dt′. (20)

Let introduce the tensor

D(t, t′′) =

t∫
t′′

G(t, t′)
∂2f

∂x2
(t′)
[
G(t′, t′′)

]
×

×
[
G(t′, t′′)

]
dt′. (21)

Then the expression (15) takes the form

t∫
t0

dt′
t′∫

t0

dt′′D(t, t′)δuf(t
′)
[
G(t′, t′′)δuf(t

′′)
]
=

t∫
t0

dt′D(t, t′)δuf(t
′)
[ t′∫
t0

dt′′G(t′, t′′)δuf(t
′′)
]
. (22)

The tensor D is the tensor of the third rank, one
time contravariant, and twice covariant, as the tensor
∂2f/∂x2. This means that it has two vector arguments
as a polylinear form. In the expression (22), they are
written consequently on right, as it was pointed ear-
lier. Note that the tensor D is symmetric relative to
this vector arguments. It follows from its definition that
D(t, t) = 0.
Differentiating the expression (21) over the second ar-

gument being denoted here by t′, we get the following
differential equation

dD(t, t′)

dt′
= D(t, t′)

[∂f
∂x

(t′)
][
. . .
]
+

+D(t, t′)
[
. . .
]
[
∂f

∂x
(t′)
]
−G(t, t′)

∂2f

∂x2
(t′). (23)

Here ellipsis denotes that one from the vector arguments
of D is absent: the second one and the first one in the
first term and in the second term of the right hand side
of the (23) correspondingly.
For greater clarity, let us write components of the ex-

pression for the second variation (14), of the tensor D,
and of the tensor equation (23):

δ2xi(t) =

t∫
t0

Di
jk(t, t

′)
∂f j

∂ul
(t′)δul(t′)×
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×
t′∫

t0

Gk
m(t′, t′′)

∂fm

∂un
(t′′)δun(t′′) dt′′ dt′+

+

t∫
t0

Gi
j(t, t

′)
[ ∂2f j

∂uk∂xl
(t′)δuk×

×
t′∫

t0

Gl
m(t′, t′′)

∂fm(t′′)

∂un
δun dt′′+

+
∂f j

∂uk∂ul
(t′)δuk(t′)δul(t′)

]
dt′, (24)

Di
jk(t, t

′) =

t∫
t′

Gi
l(t, t

′′)
∂2f l

∂xm∂xn
(t′′)×

×Gm
j (t′′, t′)Gn

k (t
′′, t′) dt′′, (25)

dDi
jk(t, t

′)

dt′
= Di

mk(t, t
′)
∂fm

∂xj
(t′)+

+Di
jm(t, t′)

∂fm

∂xk
(t′)−Gi

m(t, t′)
∂2fm

∂xj∂xk
(t′). (26)

3 Second Order Method of Numerical Solution of
the Optimal Control Problem

Write change of the functional (2) under variation of
the control u in the form

∆Φ =
∂g

∂x
∆x(T ) +

1

2

∂2g

∂x2
(∆x(T ))2 + o(λ2). (27)

Keeping in this equality linear terms, we have

δΦ =
∂g

∂x
δx(T ). (28)

Introducing conjugate momentum

Ψ(t) =
∂g

∂x
G(T, t), (29)

satisfying to the adjoint equation (3) and the terminal
condition (4), and taking into account the expression
(13), we get for the first variation of the cost functional
δΦ the well known expression

δΦ = −
∫ T

t0

Ψ
∂f

∂u
δu dt. (30)

Keeping in the equality (27) quadratic terms, we ob-
tain the expression for second variation of the functional
under variation of the control function

δ2Φ =
∂g

∂x
δ2x(T ) +

1

2

∂2g

∂x2
(δx(T ))2. (31)

The equality (31) can be written component-wise in the
following form

δ2Φ =
∂g

∂xi
δ2xi(T )+

1

2

∂2g

∂xj∂xk
δxj(T )δxk(T ). (32)

Let parameterize the control as follows. Let parti-
tion the segment [t0, T ] into subsegments [ti, ti+1], i =
1,M, tM = T, and let approximate the control by a
piecewise constant vector function:

uj(t) = uji , t ∈ [ti, ti+1]. (33)

The first derivatives of the functional over the parame-
ters are determining on the base of the expression (30)
as follows

∂Φ

∂uji
= −

ti+1∫
ti

Ψ(t)
∂f

∂uj
dt. (34)

Analogically, making use the expression (32), one can
find second derivatives of the functional over the param-
eters. Let us represent this expression in the form of sum
of two terms

∂2Φ

∂uji∂u
l
k

=

(
∂2Φ

∂uji∂u
l
k

)
1

+

(
∂2Φ

∂uji∂u
l
k

)
2

. (35)
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Here the first term and the second term are contributions
to the second derivative from the first term and from the
second term of the expression (32) correspondingly.
Let i > k. Then

(
∂2Φ

∂uji∂u
l
k

)
1

=
∂g

∂xp

ti+1∫
ti

Dp
qs(T, t)

∂fq

∂uj
(t)×

×

 tk+1∫
tk

Gs
m(t, t′)

∂fm

∂ul
(t′) dt′

 dt. (36)

If i < k, than analogous expression can be obtained by
permutation of indices in the expression for the previous
case. Finally, if i = k, than

(
∂2Φ

∂uji∂u
l
k

)
1

=
∂g

∂xp

ti+1∫
ti

Dp
qs(T, t)

∂fq

∂uj
(t)×

×

 t∫
ti

Gs
m(t, t′)

∂fm

∂ul
(t′) dt′

 dt. (37)

For the second term, we have

(
∂2Φ

∂uji∂u
l
k

)
2

=
∂2g

∂xm∂xn

ti+1∫
ti

Gm
p (T, t)

∂fp

∂uj
dt×

×
tk+1∫
tk

Gn
q (T, t)

∂fq

∂ul
dt. (38)

The algorithm of numerical solutions of the optimal
control problem in the framework of presented approach
consists in following steps. Firstly, some initial control
piecewise vector function is chosen. At the next steps,
it is being improved till some condition of termination
of the calculations is met. At the next steps, control pa-
rameters are being changed. The vector of step in space
of the parameters is being chosen in accordance with
some method of optimization of the second order, that
is a method which takes into account the first and the
second derivatives of a function to be minimized.

4 Conclusion
The second variation of the trajectory of a dynamical

system was considered also in the work [Henrion, 1975],
where the equation for the second variation analogous
to the equation (9) was written. In the present work,
we found solution of this differential equation in inte-
gral form. The expression for the solution contains the
Green function of equation for the first variation and the
tensor D introduced here. The tensor D satisfies to the
differential equation (23) and to some initial condition.
For numerical solution of the optimal control problem,
one should integrate all components of this tensor. The
number of its components is cube of dimension of the
phase space that is sufficiently smaller than in methods
using the matrix momenta. By this reason we expect
that the numerical methods based on using of the second
variation of the trajectory will be effective in problems
that require a great number of calculations, and when the
control function can be parametrized by a great number
of parameters.
The optimal control theory has numerous physical ap-

plications. The second order method presented here
can be applied for numerical solution of various phys-
ical and engineering problems. For example, it allows
to find optimal trajectories for nonlinear dynamical sys-
tems, particularly, for aircraft [Miele, 1958; Gorbunov
and Lutoshkin, 2004], spacecraft [Miele, 1958; Break-
well, 1962; Golfetto and Silva, 2012], and robots.
Among other problems where this method can be used,

it should be mentioned the problem of optimization
of charged particle beam accelerator channel [Ovsyan-
nikov, 1980; Bublik, Garashchenko, and Kirichenko,
1985; Drivotin et al., 1998; Ovsyannikov and Driv-
otin, 2003; Drivotin and Vlasova, 2014; Altsybeev et
al.; Drivotin, 2018]. This problem was formulated as
the problem of control of a dynamical system ensem-
ble in the work [Ovsyannikov, 1980], and the numeri-
cal method based on the first variation of trajectory was
developed [Ovsyannikov, 1980]. The method using the
first variation requires a great amount of computation,
espesially in this problem. Such method allows to com-
pute gradient of the cost functional over parameters of
the control function. From a geometric point of view,
it is difficult to find direction of the descent in multi-
dimensional space of parameters using only the gradi-
ent, because the gradient defines only a tangent plane to
the surface on which functional value remains constant.
To reduce amount of computations, it was proposed to
apply for numerical solution the second order method
based on the matrix momenta [Bublik, Garashchenko,
and Kirichenko, 1985]. As it was explained previously,
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the method presented in this article is expected to be
more effective than method using the matrix momenta.
Although, this article is focused on application in nu-

merical methods, we attach the highest importance to
the second variation itself and hope that the integral rep-
resentation for it will be useful in many problems of the
optimal control.
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