
CYBERNETICS AND PHYSICS, VOL. 6, NO. 3, 2017 , 131–138

CUSP CATASTROPHE IN A BISTABLE PERCEPTION
ENERGY MODEL

WITH ADDITIVE AND PARAMETRIC NOISE

Irina Bashkirtseva
Institute of Natural Science

and Mathematics
Ural Federal University

Ekaterinburg, Russia
irina.bashkirtseva@urfu.ru

Lev Ryashko
Institute of Natural Science

and Mathematics
Ural Federal University

Ekaterinburg, Russia
lev.ryashko@urfu.ru

Alexander N. Pisarchik
Center for Biomedical Technology

Technical University of Madrid
Madrid, Spain

alexander.pisarchik@ctb.upm.es

Abstract
Using the cusp catastrophe theory formalism we an-

alyze stochastic sensitivity of a bistable energy model,
often used for description of visual perception, subject
to both additive and parametric noise. In perception
psychology, different kinds of noise may be associated
with inherent brain noise originated from physiologi-
cal processes and random synaptic connections of brain
neurons due to interactions among neural networks.
We demonstrate that parametric noise leads to the to-
tal suppression of oscillations when the system stays in
an unstable equilibrium, whereas in the presence of ad-
ditive noise the oscillations still exist, but strongly sup-
pressed. Using a new approach based on the stochastic
sensitivity function and the method of confidence in-
tervals we demonstrate the effect of noise on the range
of hysteresis observed in bistable perception when a
control parameter is changed. This approach allows
prediction of the hysteresis squeezing when the inten-
sity of additive noise is increased. Stochastic bifur-
cations associated with transformation of the system
from bistable to monostable are studied using proba-
bility density functions.
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1 Introduction
Some authors emphasized that perception of ambigu-

ous images can be modeled by using the catastrophe
theory formalism [Poston and Stewart, 1978; Ta’eed,
Ta’eed and Wright, 1988]. Catastrophe theory, as a
branch of bifurcation theory, studies sudden dramatic
changes in the behavior of dynamical systems arising
when various control factors are varied. Originated by

the French mathematician René Thom in the 1960s, the
catastrophe theory became very popular in the 1970s
due to efforts of Christopher Zeeman, who applied this
theory to a number of different phenomena observed
in biological and behavioral systems [Zeeman, 1977;
Saunders, 1980]. Phenomenologically, a type of catas-
trophe is determined by a number of parameters simul-
taneously varied. Nowadays, one can distinguish up to
nine fundamental types of catastrophe. The most com-
mon ones are fold, cusp, swallowtail, and butterfly.

At the beginning of its creation, the catastrophe theory
was not applicable for description of cognitive experi-
ments, because catastrophe models were developed to
describe deterministic systems only, whereas psychol-
ogy and cognitive sciences dealt with stochastic sys-
tems. However later stochastic formulations of catas-
trophe theory allowed quantitative comparison of catas-
trophe models with experimental data [Cobb and Ra-
gade, 1978; Cobb and Watson, 1980; Cobb, 1981;
Ploeger et al, 2002; Grasman et al, 2009], including vi-
sual perception [Stewart and Peregoy, 1983; Fürstenau,
2006].

In the last two decades, noise-induced non-
equilibrium phenomena have attracted a great deal of
attention due to various interesting effects produced
by noise. For instance, it was found that small noise
underlies various probabilistic phenomena, such as
noise-induced transitions [Horsthemke and Lefever,
1984; Moss and McClintock, 1989; Anishchenko et
al, 2007], stochastic resonance [Pikovsky and Kurths,
1997; Gammaitoni et al, 1989; McDonnell et al,
2008], noise-induced order-chaos transformations
[Matsumoto and Tsuda, 1983; Gassmann, 1997;
Gao, Hwang, and Liu, 1999; Lai and Tel, 2011], and
noise-induced intermittency [Lai and Grebogi, 1995;
Pisarchik et al, 2012; Grubov et al, 2017]. Different
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effects of additive and parametric noise have also been
demonstrated using the bistable van der Pol oscillator
and the Hopf system with coexisting fixed point and
limit cycle [Bashkirtseva, Ryashko and Schurz, 2009;
Bashkirtseva, Ryazanova, and Ryashko, 2015].
In this paper, we analyze a stochastic energy model

often used for description of visual perception of am-
biguous images. Using a cusp catastrophe theory for-
malism, we study, for the first time to our knowledge,
the influence of both additive and parametric noise on
the stability of this system. The different types of noise
may be associated, respectively, with inherent brain
noise originated from physiological processes and ran-
dom synaptic connections of brain neurons. The lat-
ter arises as a consequence of interactions among dif-
ferent parts of brain neural networks functioning in a
coordinated fashion, with associated energy exchange.
Since cognition involves different classes of long range
correlated processes among brain regions supported at
the neuronal level, it results in distinct manifestations
of cerebral activity. We estimate the hysteresis value
in the bistable perception model using an analytical
approach based on the stochastic sensitivity functions
technique and the method of confidence intervals.

2 Deterministic Perception Model
Let us consider the simple double-well potential deter-

ministic model used for description of bistable percep-
tion [Moreno-Bote, Rinzel, and Rubin, 2007; Huguet,
Rinzel, and Hupé, 2014; Pisarchik et al, 2014; Pis-
archik, Bashkirtseva, and Ryashko, 2015]:

ẋ = −4ax(x2 − b) + 4c, (1)

where x is a cognition variable, c is a metabolic ac-
tivity parameter, a is an ambiguous parameter, and b
is a synaptic overlap parameter. The parameter b re-
flects a probabilistic character of the synaptic overlap
of distinct brain areas responsible for visual perception.
Cognition is directly related to both metabolic activ-
ity and synaptic connectivity. All these processes are
associated with neuronal connectivity. An increase in
connectivity enlarges the neural network involved into
cognitive processes, thus stimulating metabolic activ-
ity. A lack of metabolic activity unrelated to cognitive
demands (and network connectivity) due to some rea-
sons, e.g. Alzheimer disease, results in degradation of
existing neural networks.
The model Eq. (1) exhibits the coexistence of two

fixed points in the double-well potential U = a(x4 −
2bx2) − 4cx shown in Fig. 1 for two different values
of c. The parameters a and b describe respectively
a depth of the potential wells and a distance between
these wells. When the parameter b changes its sign
from minus to plus, the potential transforms its shape
from one-well to two-well. In what follows, we set
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Figure 1. Potential U = x4 − 2bx2 − 4cx as a function of x
and b for (a) c = 0 and (b) c = −3.

a = 1, while both b and c are used as control parame-
ters.
The deterministic system Eq. (1) for b > 0 has two

bifurcation borders:

c1(b) = −2
√
3

9
b3/2, c2(b) =

2
√
3

9
b3/2.

For c < c1, the system exhibits a single stable equilib-
rium x̄1(b, c). In a zone c1 < c < c2, after passing
saddle-node bifurcation point c1, the system has two
stable equilibria, x̄1(b, c) and x̄3(b, c), separated by the
unstable equilibrium x̄2(b, c). For c > c2, the system
exhibits a single stable equilibrium x̄3(b, c).
For b ≤ 0, the deterministic system Eq. (1) has a

single stable equilibrium x̄(b, c).

Stable equilibria x̄ of the deterministic system Eq. (1)
are plotted in Fig. 2 in the (b, c, x) space. One can
see that this deterministic model exhibits a well-known
cusp catastrophe.
The projections of the attractors to different fixed val-

ues of b are shown in Fig. 3. The cusp model describes
hysteresis which takes place for b > 0 when c is grad-
ually increased and decreased.
As can be seen in Figs. 2 and 3, hysteresis is accompa-

nied by a divergence caused by increasing the splitting
parameter b. Hysteresis only exists when b is relatively
high. Both divergence and hysteresis also depend on
the parameter c.



CYBERNETICS AND PHYSICS, VOL. 6, NO. 3 133

Figure 2. Attractors of system ẋ = −4x(x2 − b) + 4c.
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Figure 3. Stable (solid) and unstable (dashed) equilibria of deter-
ministic model ẋ = −4x(x2 − b) + 4c for b = −1 (black),
b = 0 (red), b = 1 (green), and b = 2 (blue).

3 Stochastic System
Let us now consider the stochastic model in Ito’s

sense:

ẋ = −4ax
[
x2 − (b+ εξ1(t))

]
+4c+ εaddξ2(t), (2)

where ε is an intensity of parametric noise acting on the
parameter b, and εadd is an intensity of additive noise.
In Eq. (2) ξ1,2(t) are uncorrelated white Gaussian
noises with parameters Eξi(t) = 0, E(ξi(t)ξj(τ)) =
δ(t− τ)δij , i, j = 1, 2.
Figure 4 shows the time series of the system in Eq.

(2) forced by parametric noise only for the parameters
inside the bistability zone. One can see that when the
noise intensity is increased, the amplitudes of separated
coexisting oscillations also increase and mix, leading
to stabilization of an unstable equilibrium. Such noise-
induced suppression of oscillations is explained by sin-
gularity of parametric noise that vanishes at x = 0.
Thus, strong parametric noise in this system stabilizes
the unstable equilibrium and annihilates hysteresis.
The effect of small additive noise εadd = 0.01 is il-

lustrated with the time series in Fig. 5, for the same
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Figure 4. Time series for stochastic model in bistability zone with
parametric noise only (without additive noise, i.e. εadd = 0) and
b = 1, c = 0: (a) ε = 0.2, (b) ε = 0.5, (c) ε = 0.7, and (d)
ε = 1.

parameters as in Fig. 4. Although the oscillations are
highly suppressed by the very strong parametric noise
(ε = 1), they still exist near the unstable equilibrium
x = 0 with small amplitude. [Fig. 5(d)].

Interestingly, even in monostability zones stochastic
trajectories nestle to x = 0 under parametric noise, de-
spite in this point there is no any equilibrium. This
effect is observed without additive noise (Fig. 6) and
with it (Fig. 7).
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Figure 5. Time series for stochastic model in bistability zone with
both parametric and additive noise for b = 1, c = 0, εadd =
0.01 and (a) ε = 0.2, (b) ε = 0.5, (c) ε = 0.7, (d) ε = 1.

3.1 Stochastic Sensitivity Analysis

In order to analyze the influence of noises on the hys-
teresis, we use the stochastic sensitivity function (SSF)
technique and the method of confidence intervals intro-
duced in [Bashkirtseva and Ryashko, 2011; Bashkirt-
seva, Neiman, and Ryashko, 2013] (for short back-
ground see Appendix).

For the system in Eq. (2) without additive noise, for
b > 0, stochastic sensitivity functions M1(b, c) and
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Figure 6. Time series for stochastic model Eq. (2) in monostability
zone without additive noise (εadd = 0) for c = 1, ε = 0.1
(red), ε = 1 (blue), ε = 2 (green) for (a) b = 1 (starting from
upper equilibrium) and (b) b = −1.
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Figure 7. Time series for stochastic model in monostability zone
with additive noise (εadd = 0.01) with b = 1, c = 1, and
ε = 3.

M3(b, c) of equilibria x̄1(b, c) and x̄3(b, c) are

M1(b, c) =
2a2x̄2

1(b, c)

3x̄2
1(b, c)− b

for c < c2,

M3(b, c) =
2a2x̄2

3(b, c)

3x̄2
3(b, c)− b

for c > c1.

For b < 0, the stochastic sensitivity function M(b, c)
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Figure 8. Stochastic sensitivity of stable equilibria of system Eq.
(2) with εadd = 0 and b = −1 (black), b = −0.1 (red), b = 1
(green), and b = 2 (blue).

of the single stable equilibrium x̄(b, c) is

M(b, c) =
2a2x̄2(b, c)

3x̄2(b, c)− b
.

Figure 8 shows plots of the stochastic sensitivity func-
tions M1(b, c), M3(b, c), for b > 0, and M(b, c) for
b < 0, versus the parameter c for the system in Eq.
(2) without additive noise. These functions are sym-
metric with respect to c = 0. As one can see, the
stochastic sensitivity M(b, c) of the equilibrium x̄ is
bounded whereas the stochastic sensitivity M1,3(b, c)
of the equilibria x̄1,3 unlimitedly grows as the parame-
ter c approaches c1,2. For b = 0, the stochastic sensi-
tivity is independent of c.
In Fig. 9 we plot the random states (green) and in-

ner borders (red) of confidence intervals found by the
SSF technique. In the stochastic system, the hystere-
sis value can be estimated as the distance between the
red lines in section x = 0. The confidence intervals
(red lines) indicate squeezing of the hysteresis range as
parametric noise is increased.

4 Stationary Probabilistic Density: Stochastic
Merging Bifurcation

The analytic description of the solutions of Eq. (2) is
given by the stationary density distribution ρ(x). For
small noises, the density has peaks near stable equi-
libria and wells near an unstable equilibrium. There-
fore, in the bistability zone, the function ρ(x) has two
maxima, whereas in the monostability zone only one.
A change in the additive noise intensity has no in-
fluence on the number and position of the maxima.
When the parametric noise intensity is increased, the
two well separated maxima approach each other and
merge. Thus, the bistable system can be converted into
a monostable. Such transformation is a key point in
understanding probabilistic mechanisms of the changes
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Figure 9. Random states (green) and equilibria (blue) of system Eq.
(2) with b = 1 and εadd = 0 for (a) ε = 0.02, (b) ε = 0.2,
and (c) ε = 0.5. In the panels (b) and (c) the inner boundaries of
the confidence intervals are plotted in red.

in perception under the influence of noise. The noise-
induced transition from bistability to monostability is
also of general interest for controlling multistability
[Pisarchik, Bashkirtseva, and Ryashko, 2015; Sevilla-
Escoboza et al, 2015].
The parametric description of the stochastic merg-

ing bifurcation which separates the monostable and
bistable regions is illustrated in Fig. 10. The blue curve
defined by the functions c1,2(b) shows the bifurcation
boundary for the deterministic system Eq. (2). In the
left-hand side from the line the system is monostable,
whereas in the right-hand side it is bistable. For the
stochastic system, the bifurcation boundary (red line)
is given by the following equation

c(b, ε) = ±2
√
3

9

(
b− 4ε2

)3/2
,

where ε is the intensity of parametric noise. One can
see that parametric noise shifts the boundary to the
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Figure 10. Zones of monostability and bistability for deterministic
system (blue line) and with parametric noise (red line).

right side (red line), thus enlarging the monostability
zone.
From the above analysis, it follows that there is a

critical value of the parametric noise intensity ε∗ =
1
2

√
b− 3

3√4
c2/3 needed to transform the bistable sys-

tem to monostable.
The probability distribution function of x values pro-

vides with significant information about the noise-
induced transition from bistability to monostability. In
Fig. 11 we plot the extrema of stationary density distri-
bution versus the parametric noise intensity ε for c = 0
[Fig. 11(a)] and c > 0 [Fig. 11(b)].

(a)

−

√

b
√

b

2

√

b

x

ε

0

(b)

x

0

ε* ε

Figure 11. Extrema of probability distribution function of x at (a)
c = 0 and (b) c > 0. The maxima and minima are plotted by the
solid and dashed lines, respectively.

One can see that the peaks merge only in the case of
symmetry when c = 0. Here, the critical noise inten-

sity is ε∗ =
√
b/2. For ε > ε∗ the maximum density

is located exactly above x = 0. For c > 0, the transi-
tion from bimodality to unimodality is different. When
the parametric noise intensity is increased, one of the
peaks disappears, one of the maxima merges with the
minimum, and another maximum approaches x = 0
only asymptotically.

5 Conclusion
Using catastrophe theory formalism we have analyzed

a stochastic model for visual perception under the in-
fluence of additive and parametric noise. Even though
the model is very simple, it models several known facts
about cognitive decline and dementia. The system is
derived solely from the application of the law of conser-
vation of energy and its behavior does not require other
mechanistic explanations. In this formulation, demen-
tia is irreversible, not because of the destruction of the
physical network, but because of the involved energy
and the loss of synaptic overlap. This implies that neu-
rons can still be functional, but if the degree of linkage
between them is not sufficient, then the cognitive net-
work behaves as if the neurons were lost.
For the conceptual model under consideration, pe-

culiarities of the impact of additive and parametric
noises have been studied and discussed. Without ad-
ditive noise, an increase in the parametric noise in-
tensity resulted in the disappearance of oscillations,
where the system stabilized in an unstable equilibrium,
whereas in the presence of additive noise the oscil-
lations are strongly suppressed but do not disappear.
In the stochastic energy model, the hysteresis range
provides with significant information about perception
mechanisms. In order to study the influence of noise on
the hysteresis, we used an analytical approach based on
the stochastic sensitivity functions technique, and the
method of confidence intervals. The mutual arrange-
ment of the confidence intervals borders allowed us to
estimate the hysteresis value. We have shown that an
increase in the noise intensity resulted in a decrease in
the distance between these borders and specified the
hysteresis squeezing. Qualitative changes of the sta-
tionary probabilistic density (stochastic bifurcations)
connected with the transformation of the system from
bistable to monostable have been investigated, and the
detailed parametric description of such stochastic bi-
furcations has been given.
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Appendix. Stochastic Sensitivity of Equilibrium
Consider a generic one-dimensional stochastic sys-

tem:

ẋ = f(x) + εσ(x)ξ(t), (3)

where ξ(t) is white Gaussian noise with parameters
E(ξ(t)) = 0, E(ξ(t)ξ(τ)) = δ(t− τ) and ε is the noise
intensity. Let x̄ be a stable equilibrium of the system in
Eq. (3) for ε = 0.
For small noise, we can write the following Gaussian

approximation for probability density ρ(x) of station-
ary distributed random states of the system in Eq. (3):
ρ(x) ≈ k · exp

[
− (x−x̄)2

2D

]
, where x̄ is the mean value

and D is the dispersion.
The dispersion D can be represented as D = ε2M.

Here, coefficient M connecting the value D of stochas-
tic output with the value ε2 of the stochastic input are
given as M = − σ2(x̄)

2f ′ (x̄)
. The value M is the stochastic

sensitivity function [Bashkirtseva and Ryashko, 2011]
of equilibrium x̄ for the system in Eq. (3).
Using the stochastic sensitivity M , one can find a con-

fidence interval (x̄ − r, x̄ + r). Stationary distributed
random states of the system in Eq. ((3) belong to this
confidence interval with fiducial probability P . For the
standard 3σ-rule with fiducial probability P = 0.997,
the parameter r of the confidence interval has a simple
explicit representation r = 3ε

√
M .


