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Abstract
Centre-of-mass atomic motion in an optical lattice is

shown to be near the resonance a chaotic walking due
to the interplay between coherent internal atomic dy-
namics and spontaneous emission. Statistical prop-
erties of chaotic atomic motion can be controlled by
the single parameter, the detuning between the atomic
transition frequency and the laser frequency. We de-
rive a Fokker-Planck equation in the energetic space to
describe the atomic transport near the resonance and
demonstrate numerically how to manipulate the atomic
motion varying the detuning.
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1 Introduction
Let us consider a cold two-level atom in a laser stand-

ing wave forming a 1D optical lattice. Depending on
the values of atomic and lattice parameters, different
regimes of the centre-of-mass motion can be identi-
fied: oscillations in wells of the optical potential, bal-
listic flights with acceleration and deceleration, ve-
locity grouping, Brownian motion and random walk-
ing with Lévy flights [Kazantsev et al, 1990; Bardou
et al, 2002; Chu, Wieman, 1989]. Theoretical study
and experimental realization of these effects have been
done, mainly, in the context of laser cooling of atoms
when the laser is far detuned from the atomic transi-
tion frequency and the excited state can be adiabati-
cally eliminated. Near the resonance, coherent inter-
action of atoms with a laser field may strongly affect
the atomic motion. It has been shown in Refs. [Prants,
Konkov, 2001; Argonov, Prants, 2007] that, when ne-
glecting spontaneous emission (SE), there should exist
a deterministic chaotic transport of atoms with expo-
nential sensitivity to small variations in initial condi-
tions and/or lattice parameters. In our recent work [Ar-
gonov, Prants, 2007] we developed a semiclassical the-

ory of this phenomenon resembling a random walking
but without any random forces and noise.
In this Letter we use a Monte Carlo wavefunction

approach to take into account SE and demonstrate a
new type of motion in an optical lattice, a chaotic
atomic walking, with the properties both of the chaotic
atomic transport, caused by coherent atomic dynam-
ics, and of a random process due to SE kicks. It
is a kind of random walking with specific statistical
properties that cannot be classified neither as deter-
ministic chaotic motion nor as normal diffusion nor as
sub(super)diffusion and nor as Lévy flights. We de-
rive a Fokker-Planck equation in the energetic space,
study the statistical properties of the chaotic walk-
ing and demonstrate numerically how to manipulate
these properties varying the atom-field detuning. Small
changes in this parameter may affect drastically the
atomic transport, transforming the atomic motion from
a practically regular one to anomalous diffusion.

2 Monte Carlo wavefunction approach
We start with the non-Hermitian Hamiltonian of a

two-level atom interacting with a strong standing-wave
1D laser field forming an optical lattice. In the frame
rotating with the laser frequency ωf , it has the form

Ĥ =
P̂ 2

2ma
+

1

2
~(ωa − ωf )σ̂z−

− ~Ω (σ̂− + σ̂+) cos kf X̂ − i~
Γ

2
σ̂+σ̂−,

(1)

where σ̂±,z are the Pauli operators for the internal
atomic degrees of freedom, X̂ and P̂ are the atomic
position and momentum operators, ωa, ωf and Ω are
the atomic transition, laser and Rabi frequencies, re-
spectively, and Γ is the spontaneous decay rate. In-
ternal atomic states are described by the wavefunction
|Ψ(t)〉 = a(t)|2〉 + b(t)|1〉, with a and b being the
complex-valued probability amplitudes to find an atom



in the excited |2〉 and ground |1〉 states. Note that the
norm of the wavefunction, |a|2 + |b|2, is not conserved
due to non-Hermitian term in the Hamiltonian.
To study the atomic dynamics in the optical lattice we

use the standard Monte Carlo wavefunction technique
to get the most probabilistic outcome that can be com-
pared directly with corresponding experimental obser-
vations with single atoms. The method is based on the
evolution of an atomic state |Ψ(t)〉 while a continuous
measurement of radiation-field state is performed by
an ideal photodetector. The evolution consists of two
parts: (1) jumps to the ground state (a = 0, |b|2 = 1)
each of which is accompanied by the emission of an
observable photon at random time moments with the
mean time (|a|2 Γ)−1 and (2) coherent evolution with
continuously decaying norm of the atomic state vector
without the emission of an observable photon. The de-
cay of the norm of the state vector is equal to the proba-
bility of spontaneous emission of the next photon. This
coherent decay without emission of a photon is usu-
ally interpreted within the context of the quantum mea-
surement theory. Let us introduce the new real-valued
variables (normalized all the time) instead of the am-
plitudes a and b (renormalized only after SE events)

u ≡
2 Re (ab∗)

|a|
2

+ |b|
2
, v ≡

−2 Im(ab∗)

|a|
2

+ |b|
2

, z ≡
|a|

2
− |b|

2

|a|
2
+ |b|

2
,

(2)
which have the meaning of synphase and quadrature
components of the atomic electric dipole moment and
the population inversion, respectively. We stress that
the length of the Bloch vector, u2 + v2 + z2 = 1, is
conserved.
The average atomic momentum is supposed to be

large as compared with the photon momentum ~kf , so
the translational atomic motion can be treated classi-
cally using the Hamilton equations. The whole atomic
dynamics is governed by the following Hamilton-
Schrödinger equations [Argonov, Prants, 2006]:

ẋ = ωrp, ṗ = −u sinx +

∞∑

j=1

pjδ(τ − τj),

u̇ = ∆v +
γ

2
uz − u

∞∑

j=1

δ(τ − τj),

v̇ = −∆u + 2z cosx +
γ

2
vz − v

∞∑

j=1

δ(τ − τj),

ż = −2v cosx −
γ

2
(u2 + v2) − (z + 1)

∞∑

j=1

δ(τ − τj),

(3)
where x ≡ kf 〈X̂〉 and p ≡ 〈P̂ 〉/~kf are the normal-
ized atomic centre-of-mass position and momentum,
respectively. The dot denotes differentiation with re-
spect to the normalized time τ ≡ Ωt. The values of
the normalized decay rate γ ≡ Γ/Ω and the recoil
frequency ωr ≡ ~k2

f/maΩ � 1 are fixed in this pa-

per, and the normalized detuning ∆ ≡ (ωf − ωa)/Ω
is a variable parameter. In the equations of motion
(3) τj are random time moments of SE events and pj

are random recoil momenta with the values between
±1 in a one-dimensional case. In terms of the nor-
malized time τ the mean frequency of SE events is
equal to γ(z + 1)/2. At the time moments τ = τj ,
the atomic variables change as follows: p → p + pj ,
u → 0, v → 0, z → −1. The well-known effects of
acceleration, deceleration and velocity grouping have
been successfully simulated with Eqs. (3) in Ref. [Ar-
gonov, Prants, 2006]. In the present numerical simula-
tion we take a cesium atom with the working transition
6S1/2 − 6P3/2 (λa = 852.1 nm and Γ = 3.2 · 107 Hz)
interacting with a rather strong field with the resonant
Rabi frequency Ω = 1010 Hz. Thus, the correspond-
ing normalized recoil frequency is ωr = 10−5 and the
spontaneous decay rate is γ = 3.3 · 10−3.
It follows from Eqs. (3) that the centre-of-mass mo-

tion is described by the equation for a nonlinear phys-
ical pendulum with a frequency modulation caused by
coherent internal atomic dynamics and random kicks
of the momentum. Besides SE recoils any atomic tra-
jectory is determined by the coherent evolution of the
synphase component of the electric dipole moment u
between the events of SE and its jumps at random time
moments τj . These jumps are not small. In our recent
paper [Argonov, Prants, 2007] we developed a theory
of atomic transport in an optical lattice (in the absence
of SE) based on a specific behavior of the variable u
which performs shallow and fast oscillations between
the nodes of the standing laser wave and changes sud-
denly its value when atoms cross the nodes. The theory
predicts deterministic chaotic transport at small values
of the detuning |∆| � 1 whose statistical properties
are very well described by a stochastic map for the de-
terministic variable u [Argonov, Prants, 2007]. In fact,
atom moves in a rigid optical lattice just like as in a
random optical potential with a complicated alternation
of oscillations in potential wells and flights over many
wells when it can change its direction of motion many
times. SE causes further complication of this motion.

3 Chaotic walking at small detunings, |∆| � 1
Near the resonance (|∆| � 1 ), the following quantity

is almost conserved between any two acts of SE:

H̃j ≡
ωr

2
p2 − u cosx −

∆

2
z −

∆γ

4
〈1 − z2〉(τ − τj) =

= H −
∆γ

4
〈1 − z2〉(τ − τj),

(4)
where τj 6 τ < τj+1. H is the total atomic energy
which is a constant in the purely Hamiltonian system,
i.e. without any relaxation [Argonov, Prants, 2007].
The last term in (4) with the averaging over a time ex-
ceeding the period of the Rabi oscillations compensates
the relaxation. The energy H changes suddenly at the
moments of SE and decays linearly in between (Fig. 1)



whereas the pseudoenergy H̃ changes suddenly as well
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Figure 1. Time evolution of the atomic energy H (dashed line) and

the synphase component of the electric dipole moment u0 (solid line)

at the same small value of the detuning ∆ = −0.001 but with

different initial conditions.

at the same moments but is approximately a constant in
between. At H & |u|, the atom moves ballistically, and
its momentum cannot be zero because at small detun-
ings |∆| the kinetic energy is larger than all the other
terms in (4). If H . 0, the atom changes surely the
sign of the momentum during its motion. Thus, if we
could construct a mapping for the pseudoenergy H̃j ,
we would know approximately when atoms move bal-
listically and when they turn and could estimate the
duration of the atomic flights which is a time interval
between two successive events when atom changes the
sign of p.

Just after SE at τ = τj , we have u → 0, z → −1,
p → p + pj and H → H̃j , and a change in the energy
H during the time interval between the acts of SE is
equal to the difference between the values of the pseu-
doenergy just before (H̃j−1) and just after the j-th SE

(H̃j)

Hj − Hj−1 = H̃j − H̃j−1 = ωrp(τj)pj +
ωr

2
p2

j +
∆

2
+

+ u(τj) cos x(τj) +
∆

2
z(τj) +

∆γ

4
〈1 − z2〉(τj − τj−1),

(5)
where Hj is a value of the energy just after τ = τj

and x(τj), u(τj), z(τj), p(τj) are the values of the cor-
responding variables just before the moments τ = τj

which are determined by coherent evolution between
SE events. Changes in H at τ = τj are conditioned
mainly by the corresponding changes in u (Fig. 1). We
stress that sudden changes in u occur at the moments of
crossing the nodes of the standing wave and SE events.
In Fig. 1b the jump just after t = 1.2 µs occurs when
the atom crosses a node whereas the jump just before
t = 1.4 µs is caused by a SE event.
Let us estimate the average value of the energy

jump’s magnitude. Analytical estimate and simulation
show that with sufficiently large values of the momen-
tum, ωr|p| & γ/2, and at small detunings, we get
〈u cosx〉 ' 〈z〉 ' 0 during the coherent evolution.
The component u never goes far away from zero, and
z performs frequency-modulated harmonic oscillations
in the range −1 . z . 1. The probability of SE is pro-
portional to (z+1)/2. We estimate the average value of
the population inversion just before SE events at τ = τj

to be equal to 〈z(τj)〉 ' 0.5. In the expression (5) the
first and fourth terms are estimated to be zero in aver-
age but the second, third, fifth and sixth ones are not.
The total average change in Hj due to SE and the re-
laxation term is

〈Hj − Hj−1〉 =
ωr

6
+ ∆, (6)

where we estimated the average value of z2 to be 1/2
and the average value of the squared recoil momen-
tum p2

j is 1/3. The mean time between SE events is
〈τj − τj−1〉 = 2/γ.
Thus, the evolution of the energy H is an asymmetric

random walking. At positive values of the detuning ∆,
the values of H increase in average, whereas at ∆ < 0
they may increase or decrease depending on the rela-
tions between ωr and ∆. We take the values of the
detuning to be |∆|/2 � ωr/9, and if ∆ < 0 then Hj

decreases in average. The corresponding physical ef-
fects — light-induced acceleration and deceleration of
atoms — are well known [Kazantsev et al, 1990].
The diffusion coefficient in the energetic space can be

estimated with the help of the two largest terms in Eq.
(5) as

D ≡
〈(Hj − Hj−1)

2〉 − 〈Hj − Hj−1〉
2

4〈τj − τj−1〉
'

'
〈ω2

rp2p2
j 〉γ + 〈u2(τj) cos2 x(τj)〉γ

8
'

ωrHjγ

12
+

∆2

16
,

(7)



where we suppose u to be a random-like process
(Fig. 1) described by the Eq. (11) from Ref.[Argonov,
Prants, 2007], which is correct only under the con-
dition |p| � 1/ωr. This condition is fulfilled for
all the atomic flights found in the numerical simula-
tion. By the other hand, there is a stronger condition,
ωr|p| & γ/2, that is needed to neglect correlations be-
tween u2 and cos2 x. Thus, the expression (7) fails to
give a result supporting the corresponding numerics for
sufficiently slow atoms. The drift velocity of particles
in the energetic space at sufficiently large values of p is

c ≡
d〈H〉

dτ
=

〈Hj − Hj−1〉

〈τj − τj−1〉
=

ωrγ

12
+

∆γ

2
. (8)

This result is also correct only with sufficiently fast
atoms. In Fig. 2 we compare numerical results of com-
putation of the diffusion D and drift c coefficients with
those obtained with (7) and (8). Some cases (especially
D for ∆ = −0.0001) show very good correspondence
between numerical and analytical data, some (D for
∆ = −0.001) have much less precision. Analytical re-
sults for drift coefficient c are not applicatable for most
slow atoms. However, in all the cases we have rather
good qualitative correspondence. At the same condi-
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Figure 2. The diffusion D and drift c coefficients in the enegry

space vs the energy H : stars — ∆ = −0.001, circles —

∆ = −0.0001 (numeric data). Solid lines show the correspond-

ing analytic results using formulas (7) and (8).

tion as (8) we can estimate the friction force acting on

the atom to be the following:

F ≡
d〈p〉

dτ
'

∆γ

2ωrp
. (9)

This kind of decreasing F with increasing p is a well-
known fact [Kazantsev et al, 1990].
Random jumps of the atomic energy just after SE give

rise to a random walking of atoms in an optical lattice.
In order to find distribution of the durations of atomic
flights we consider the problem of the first passage time
for the quantity Hj to return to its zero value (to be
more correct, a return of H to |u| must be considered,
but with |∆| � 1 the variable u cannot reach large
values and always returns to zero value for the time
∼ 2/γ, see Fig. 1). In the very beginning of any flight
we have Hj ≈ 0, then it can reach a rather large value
and after that it returns to zero. The duration of this
process is a flight duration T .
If the random jumps of Hj would be symmetric, the

probability to find the flight duration to be equal to T
would be proportional to T−1.5, where the exponent
does not depend on the diffusion coefficient (a classical
result in theory of symmetric random walking [Feller,
1964]).
What will happen if we take into account that the ran-

dom walking of Hj is asymmetric? At ∆ > 0, atoms
begin to accelerate without any flights. At ∆ < 0, the
friction force tends to stop atoms, and instead of the
power-law decay T−1.5 we get an exponential one at
large T . At large times exceeding the mean SE time
2/γ, one may treat the evolution of H as a diffusion
process with a drift described by the Fokker-Planck
equation in the energetic space

Ṗ (H, τ) = −2c
∂P

∂H
+ D

∂2P

∂H2
, (10)

where the diffusion D and drift c coefficients are given
by Eqs. (7) and (8), respectively. If the coefficients
c and D would not change with changing the energy,
the PDF for flight durations would be equal to [Feller,
1964]

Pfl ∝ e−c2T/DT−1.5. (11)

This result agrees qualitatively with the results of nu-
merical simulation shown in Fig. 3a for a few values
of the detuning ∆. Really, all the PDFs in Fig. 3a have
power-law fragments followed by exponential tails at
large T in accordance with the formula (11). However,
the length of these fragments depends strongly on the
value of the detuning. At very small value ∆ = −10−5

(when coherent atomic dynamics is practically regular
[Argonov, Prants, 2007] and atom performs a random
walk due to SE), Pfl ∼ T−1.5, whereas at larger val-
ues of |∆| the power-law fragments are much shorter.
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Figure 3. The PDFs Pfl for the duration of atomic flights T ms

in milliseconds with (a) small detunings (crosses ∆ = −0.01,

stars ∆ = −0.001, circles ∆ = −0.0001, squares ∆ =
−0.00001) and (b) medium detunings (stars ∆ = −0.09,

α = −0.77; circles ∆ = −0.1, α = −0.27; squares

∆ = −0.12, α = −0.05). Straight lines show slopes α of

the power-law fragments of the PDFs in log-log scale.

In fact, both c and D depend on the value of H , there-
fore, Eqs. (7) and (8) are not correct for small values of
the momentum p, and more accurate formula for Pfl is
required.
To illustrate the behavior of the atomic momentum at

different values of the detuning we plot in Fig. 4a a
typical chaotic walking of an atom with comparatively
long flights at ∆ = −0.001 and in Fig. 4b chaotic walk-
ing with short flights at ∆ = −0.01.
Qualitatively, the statistics in Fig. 3 are similar to

those computed in Ref. [Argonov, Prants, 2007] with
a purely Hamiltonian coherent dynamics. Both of the
PDFs contain power-law fragments with exponential
decays at their tails, but the origin of these fragments
and tails is different. Statistics of the purely Hamilto-
nian system [Argonov, Prants, 2007] is governed by a
deterministic diffusion of the quantity u in a bounded
space (between its maximal and minimal values ±1),
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Figure 4. Dependencies of the current atomic velocity v on time:

(a) ∆ = −0.001, chaotic walking with comparatively long flights,

(b) ∆ = −0.01, chaotic walking with short flights, (c) ∆ =
−0.1, velocity grouping effect.

at a constant energy H . Solution for the first-passage-
time problem for the quantity u = ±H gives a PDF
with a power-law fragment with the slope −1.5 and an
exponential tail. The quantity u jumps to zero value at
the moments of SE (see Fig. 1), and its evolution can-
not be treated as a diffusion process when we take into
account SE. However, the energy now is not a constant
and can walk randomly (with a drift) within a broad
range. The statistics of the system with SE is defined by
a random walking of the energy H , not u. Thus, in both
the systems the condition H ≈ ±u defines the value of
the energy which allows atoms to stop and turn back.
Transformation of power-law fragments into exponen-
tial tails is explained in the purely Hamiltonian system
[Argonov, Prants, 2007] by a limitation of the quantity
u, whereas in the system with SE it is explained by a
drift of the energy H . Both of those factors prevent
randomly walking quantities to go far from their crit-
ical values and decrease exponentially the probability
of long atomic flights.

4 Chaotic walking at moderate detunings, |∆| . 1
The effect of velocity grouping, when there are one

or a few values of the capture momentum pg to which
current momenta of different atoms tend to, is known
to occur at moderate negative values of the detuning
[Kazantsev et al, 1990]. This effect has been numer-



ically demonstrated with Eqs. (3) in our recent paper
[Argonov, Prants, 2006]. Chaotic walking of atoms
may occur in the regime of velocity groping if the val-
ues of pg are sufficiently small and atoms can change
the direction of motion due to fluctuations of momen-
tum (caused by chaos in coherent evolution and/or SE,
see Fig. 4c).
Computed statistics of atomic flights at medium val-

ues of the detuning |∆| . 1 (Fig. 3b) are similar to that
at small detunings but the slope of the power-law de-
cay may differ considerably. The PDFs Pfl(T ) shown
in Fig. 3b demonstrate decrease of the slope with in-
creasing the values of |∆| with corresponding increase
of the lengths of the power-law fragments. It should be
emphasized that the length of the power-law fragments
(and the mean flight length) increases significantly with
a rather small increas in |∆|.
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Figure 5. Dependencies of the logarithms of the mean duration of

atomic flights 〈T µs〉 (in microseconds) (solid line) and of the slope

α of the PDF power-law fragments (squares) on the medium detun-

ing ∆.

Varying the value of the detuning ∆, one can manipu-
late atomic transport in an optical lattice and its statisti-
cal properties. In Fig. 5 we plot the dependencies of the
mean duration of atomic flights 〈T 〉 (in microseconds)
and the slope of the power-law fragments of Pfl ∼ T α

on the detuning in the range of medium values. The de-
pendencies correlate well with each other. Figure 3 b
demonstrates clearly that the length of the power-law
fragments increases with increasing the absolute val-
ues of the detuning, whereas the absolute value of the
slope α decreases. The mean duration of flights 〈T 〉
increases correspondingly with increasing |∆|.
The control is nonlinear in the sense that when slightly

decreasing ∆, say, from −0.08 to −0.12, the mean
time of flights increases in a few orders of magnitude
(see Fig. 5). This effect is explained by increas in
the value of the capture momentum pg and decreas-

ing fluctuations of the current atomic momentum with
increas in the absolute value of |∆|. For example, at
∆ = −0.1, one gets pg ' 500 (' 1.5 m/s) with the
momentum fluctuations of the same order. Thus, the
atom can change its direction of motion (see Fig. 4 c,
with ∆ = −0.1 the mean time of flights is Tµs ∼ 10µs)
but not so frequently as in the case of smaller detunings
(see Fig. 4b). The value of pg increases with increasing
|∆| and, say, at pg ' 1000 the momentum fluctuations
are of the order of 300, and the atom cannot change
its direction of motion. Reduction in the momentum
fluctuations is caused by increas in the friction force
F . With the values of p smaller than pg, the force F
is so large that changes in the energy H with time is
not a process of random walking (as it is in the case
with smaller detunings) but rather a directed drift in the
momentum space to the value of the capture momen-
tum. Thus, it is practically impossible for atoms to de-
crease their current values of p to zero value, and the
process of chaotic walking eventually stops. The slope
α of the PDF power-law fragments can go to zero due
to existence of an exponential decay at the very tail of
Pfl. With a purely power-law decay the minimal slope
would be α = −1.
In conclusion, we have shown that near the resonance

atomic transport in an optical lattice is a complicated
process of chaotic walking caused by an interplay be-
tween coherent but deterministically chaotic internal
atomic dynamics and spontaneous emission random
events. It is possible to manipulate this process and its
statistical characteristics by varying the single control
parameter, the atom-laser detuning ∆.
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