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Abstract

When an ambiguous stimulus is observed, our percep-
tion undergoes dynamical changes between two states,
a situation extensively explored in association with the
Necker cube. Such phenomenon refers to bistable per-
ception. Here, we present a model neural network
composed of forced FitzHugh-Nagumo neurons, im-
plemented also experimentally in an electronic circuit.
We show, that under a particular coupling configu-
ration, the neural network exhibit bistability between
two configurations of clusters. Each cluster composed
of two neurons undergoes independent chaotic spiking
dynamics. As an appropriate external perturbation is
applied to the system, the network undergoes changes
in the clusters configuration, involving different neu-
rons at each time. We hypothesize that the winning
cluster of neurons, responsible for perception, is that
exhibiting higher mean frequency. The clusters fea-
tures may contribute to an increase of local field po-
tential in the neural network.
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1 Introduction

The well-known FitzHugh-Nagumo model (FHN)
[FitzHugh, 1961], derived from the Hudgkin-Huxley
equations describing the ionic dynamics of the giant
squid neuron, has been the subject of intensive stud-
ies [Scott, 2002]. The model is two-dimensional and
may exhibit excitable, bistable or oscillatory behaviour.
More complex dynamics on the single neuron level in-
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cluding chaotic spiking, has been theoretically inves-
tigated in FHN by introducing a third dimension [Doi
and Kumagai, 2005; Marino et al, 2007]. The chaotic
behaviour was also observed in the case where the pe-
riodic forcing was considered [Pankratova, Polovinkin
and Spagnolo, 2005]. The chaotic mixed-mode oscilla-
tions (chaotic small amplitude oscillations interrupted
by large spikes) were observed in chemical [Petrov et
al, 1992], biological [Iglesias et al, 2011] and physical
[Marino et al, 2011] systems.

The FHN, as well as many other systems, have been
widely used to model the information processing by
the brain, like the synchronization processes or the
spontaneous emergence of the brain rhythms. These
phenomena are accessed experimentally mainly by the
measurements of electric activity of the brain. How-
ever, there are also indirect ways of observation how
the brains work, namely, the psychophysical experi-
ments. As an example, the observers who are presented
a stimulus that has two distinct interpretations alternate
their perception over time between two possible per-
cepts in an irregular manner. This phenomenon, known
as perceptual bistability, appears in response to expo-
sure to ambiguous figures like Necker cube [Necker,
1832] or to non-stationary ambiguous motion displays
[Hupé and Rubin, 2003]. The question which arises
is about the mechanism of the irregular alternations
appearance. Many models have been proposed to ex-
plain this phenomenon. The most current models con-
sider competing neuronal populations in which the al-
ternations are generated with perfect periodicity [Lago-
Fernandez and Deco, 2002]. However, the experimen-
tal data show that the ensemble of irregular durations
of one percept form a Gaussian-like distribution [Rubin



166

and Hupé, 2004]. The first proposal that these bistable
transitions may be mediated by noise was provided by
Haken [Haken, 1994]. The detailed models implement-
ing the idea have been analyzed through considering
the switching processes between the attractors of a net-
work under the effect of noise [Moreno-Bote, Rinzel
and Rubin, 2007]. These approaches reproduce well all
the characteristics found in experimental data. How-
ever, the existence of a high complexity in neural re-
sponses gives a cue about the deterministic rather than
stochastic functioning of the brain units. This of course
does not exclude the existence of noisy fluctuations but
restricts its action on decision making processes which
are not random but deterministic. There are many ex-
perimental data which confirm the existence of chaos
in the brain [Korn and Faure, 2003].

Here, we propose an alternative model for perceptual
bistability based on chaos generating systems. We con-
sider coupled FHN systems driven by an external forc-
ing in a network that includes electrical couplings, both
inhibitory and excitatory. We show that in a certain
range of the coupling parameters, such a network un-
dergoes bistable behaviour. Considering four interact-
ing neurons we observe the emergence of two clusters
with independent chaotic dynamics. The crucial differ-
ence between the clusters is the frequency of chaotic
spiking. One cluster dominates over the other through
the higher mean frequency and thus it contributes to
higher Local Field Potential (LFP). This may be a pos-
sible mechanism of effective competition between the
two perceptual choices. In fact, many physical mod-
els describe the synchronization of high frequency neu-
ronal activity as the coordinating mechanism for fea-
ture binding [Singer, 2004], whereby spatially segre-
gated processing areas are bounded together to provide
a coherent percept [Arecchi, 2004].

2  Model of a Network
Each driven FHN system is ruled by the following
equations:

ii:xi—x§/3—yi+F+0¢Al’i+S
9i = (@ — by; + x;) M

where x; is the fast variable, y; is the recovery variable
and F' = Asin(27vt) is an external driving term with
amplitude A and frequency v = 1/T. We consider
fixed parameters v = 0.08, a = 0.7 and b = 0.8. Pa-
rameter « is the coupling strength. Equation 1 may be
transformed to a three-variable set of equations by in-
troducing a new variable z; = 2wt = wt. The bistable
perception of the Necker cube (see Fig. 1 (a)) is mod-
eled with the neural network shown in Fig. 1 (b). The
coupling term Ax; is defined as follows:

Al’lyg = T4 — T2

A.’E214 =1 — I3. (2)
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Figure 1. (a) Bistable perception of the Necker cube. (b) Scheme
of the neural network with inhibitory (circles) and excitatory (arrows)
connections that produces bistable patterns.
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Figure 2. Electronic implementation of each FitzHugh-Nagumo
system that composes a network.

The cube ambiguity may be manipulated by darken-
ing one of the cube faces (cue) to provide a unique
cube interpretation. When the position of the cue is
stationary the cube perceived perspective is steady and
driven by the cue position. It has been shown in [Ar-
righi et al, 2009], that when the position of a cue is
alternated in time, two different perceptual phenomena
are observed. On one hand, at low frequencies the cube
perspective alternates in line with the position of the
cue. On the other hand, at high frequencies the cue is
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no longer able to bias the perception and the cube per-
spective returns to be bistable as in the conventional,
bias-free, case.

The obtained results show the importance of a cue in
the processes of perception. In our study, we hypothe-
size that in the absence of external cues the visual sys-
tem generates its own cues through the mechanism of
ocular movement [Buswell, 1935]. The slight changes
S in the visual area (spatial gradient) due to ocular
movement may act as the stimulus for the switching
from one perspective to the other. In the model network
the external perturbation S is active only for neurons x;
and x4 and has a form of a short rectangular pulse of
amplitude B and duration At.

3 Experimental Realization of a Network

The electronic circuit implementing the FitzHugh-
Nagumo equations is shown in Fig. 2. It consists of an
electronic analog simulator implemented by commer-
cial semiconductor devices. We set the systems in the
spiking regime consisting of chaotic small amplitude
oscillations interrupted by large spikes (see [Ciszak
et al., 2012] for details). A small amplitude chaotic
regime is reached approximately at A = 0.57 V (for
the experiment) and A = 0.4 (for the model). The
coupling is realized by means of differential amplifiers
which allow to summate the signals coming from the
neighboring nodes.

4 Results

The formation of synchronized clusters is observed
when the proper coupling configuration is imple-
mented. It is determined by asymmetric inhibitory and
excitatory connections in the network. More precisely,
the network is composed of two excitatory and two
inhibitory neurons. The bistable switching occurs for
the pairs of exhibitory-inhibitory neurons. The crucial
difference between the two formed clusters is the fre-
quency of chaotic spiking. In Fig. 3 (a) we report the
raster plot that shows spiking times of each node in
the experimentally implemented network. The forma-
tion of two clusters is observed, each characterized by
different inter-spike interval (ISI) distributions as seen
in Fig. 3 (b). One cluster dominates over the other
through the higher mean frequency and thus contributes
to higher LFP.

The alternation between the dominant clusters may be
induced by changing of initial conditions, or equiva-
lently, by the external perturbation, that induces the
transitions from one state to the other. We consider
rectangular stimulus S applied to the excitatory neu-
rons in each pair of excitatory-inhibitory neurons. Here
we assume that the recorded changes in the visual field
induced by the ocular movements act as external stim-
ulation. The ocular movements may be stochastic or
may undergo deterministic trajectories defined by un-
known dynamical processes. In Fig. 4 (a) the raster
plot for the coupled network obtained through the nu-
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Figure 3.  (a) The raster plot for four coupled FHN systems obtained
from the experiment. Each horizontal line marks the appearance of a
spike in time at each site. (b) Distribution of ISI calculated from the

time series corresponding to the raster plot shown in (a).

merical simulations is shown. At time ¢ = 250 the
external perturbation .S has been applied to excitatory
neurons x1 and z4. The network reacts in switching its
state, the dominating cluster 1 — x3 leaves place to the
new leader xo2 — x4. In order to describe the collective
neurons’ dynamics and their rates of firing we consider
LFP. It represents the electric potential of a group of
neurons recorded with limited temporal resolution. We
calculate it as follows:

M N

LFP(tm) =Y > an(tm +iAt) 3)

i=1n=1

where x,,(t,, + i¢At) denotes the nth neuron state at
time ¢t = t,, + ¢At, M is the number of summed tem-
poral points, N is the number of neurons, At is the
integration time step and t,, is the effective time at
which the LFP is measured. As shown in Fig. 4 (b),
the higher firing rate contributes to an increase in LFP.
This may lead to temporal perception of an object en-
coded in a given column of neurons. Indeed we see
the abrupt transition from one state to the other at the
moment when the external perturbation is applied.

5 Conclusions

We proposed a simple network composed of chaos
generating systems to model perceptual bistability. We
considered four chaotic FHN systems coupled through
the inhibitory and excitatory connections. We observed
the emergence of two synchronized clusters that un-
dergo independent chaotic dynamics characterized by
different mean frequency of spiking. Due to these dif-
ferences one cluster dominates over the other and con-
tributes stronger to LFP leading consequently to the
strengthening of a given perceptual state. This may be
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Figure 4. (a) The raster plot for four coupled FHN systems, ob-
tained through numerical simulations, with & = 0.05. Each hori-
zontal line marks the appearance of a spike in time at each site. At
time ¢ = 250 the external perturbation S of amplitude B = 0.3
and duration At = 0.01 has been applied to neurons &1 and Z4.
(b) LFP calculated from the time series corresponding to the raster
plot shown in (a). Black curve corresponds to the LFP of the cluster
X1 — I3 and grey curve to the cluster Lo — X4.

a possible mechanism of effective competition between
the two perceptual choices.
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