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Abstract
A stabilization problem for a nonlinear system with a

sector bound nonlinearity and a pulse-width modulated
(PWM) feedback is considered. The linear matrix in-
equalities (LMI) technique is used to estimate the do-
main of attraction for the zero equilibrium of the closed
system.
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1 Introduction
The subject of this study is a controlled nonlinear sys-

tem with a pulse-width modulator in the feedback. The
system comprises a nonlinear continuous-time subsys-
tem with a sector bound nonlinearity and a modulator,
which transforms a continuous signal into a train of rect-
angular pulses that are emitted at a given constant fre-
quency, but their widths vary (are modulated). The pulse
signal can take only three discrete values −1, 0 and 1.

The idea of a PWM control goes back to the end of the
XIXth century (see [Gouy, 1897]). Because of its sim-
ple engineering implementation, PWM gained a great
popularity and has been a subject of many mathemati-
cal studies (see, among others, [Skoog and Blankenship,
1970; Kuntsevich and Chekhovoi, 1970; Kuntsevich and
Chekhovoi, 1971; Tsypkin and Popkov, 1973; Kipnis,
1992; Gelig and Churilov, 1998; Yuan et al., 1998;
Zhusubaliyev and Mosekilde, 2003; Massioni et al.,
2019]). The two main mathematical approaches can be
mentioned. In the case when the continuous part of a
system is linear, the reduction to discrete-time equations
is frequently applied (see, e. g., [Kadota and Bourne,

1961; Hou and Michel, 2001; De Koning, 2003; Asai,
2006; Tomita and Asai, 2006; Almér et al., 2007; Sı́ra-
Ramirez et al., 2015]). Another approach relies on av-
eraging of the impulsive signal in sampling periods (see
[Andeen, 1960a; Andeen, 1960b; Sı́ra-Ramirez, 1989;
Taylor, 1992; Sakamoto and Hori, 2002; Sakamoto et al.,
2002]). The Gelig’s method of averaging based on
the absolute stability theory was proposed and devel-
oped in [Gelig, 1982; Gelig and Churilov, 1993b; Gelig
and Churilov, 1996; Gelig and Churilov, 1998; Gelig,
2009]). Further it was refined with the help of the in-
tegral quadratic constraints (IQC) theory, see [Chauden-
son et al., 2013; Chaudenson, 2013; Fetzer and Scherer,
2016; Fetzer, 2017]. However, the PWM systems con-
sidered in the latter works had linear continuous parts.

Since a PWM control signal is bounded, we can rarely
achieve stabilization for all the initial data. However, the
stabilization problem can be solved locally, in a vicin-
ity of the zero point (cf. [Asai, 2006; Tomita and Asai,
2006]). A domain of attraction of the zero equilibrium
is estimated using the computational technique of linear
matrix inequalities (LMI. see [Boyd et al., 1994]).

In this paper we will explore stability of a PWM sys-
tem with the help of the Gelig’s version of the averaging
method. We develop further the technique proposed pre-
viously in [Churilov, 2019c] to extend it to the case of
unsaturated behavior.

2 Problem Setting
Consider a controlled nonlinear system

ẋ = Ax(t) +B0f(t) +Bu(t), (1)
η(t) = C0x(t), σ(t) = Cx(t). (2)
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HereA, B0, B, C0, C are constant matrix coefficients of
sizesm×m,m×1,m×1, 1×m, 1×m, respectively, x(t)
is an m-dimensional state vector, η(t), σ(t) are scalar
intrinsic functions, u(t) is a scalar control function.

Assume that f(t) = ϕ0(η(t), t), where the nonlinear-
ity ϕ0(·, ·) satisfies a sector bound

µ1 6
ϕ0(η, t)

η
6 µ2, ∀η 6= 0, ∀t > 0, (3)

where µ1, µ2 are some constants. Thus for any t the
graph of ϕ0(·, t) lies in a conic sector in the plane.

The control function u(t) is defined as PWM signal.
Let T > 0 be a constant sampling period, and

u(t) =

{
un, nT 6 t < nT + τn,

0, nT + τn 6 t < (n+ 1)T,
(4)

n = 0, 1, . . .. Here

un = sgnσ(nT ), (5)

τn =

{
T
σ∗
|σ(nT )|, |σ(nT )| 6 σ∗,

T, |σ(nT )| > σ∗,
(6)

where σ∗ is a given threshold. Thus the function in the
right-hand side of (6) has regions of linearity and of sat-
uration. The control law (5), (6) implements a lead-type
PWM described, e. g., in [Andeen, 1960a; Kadota and
Bourne, 1961].

Obviously, system (1)–(6) has a zero equilibrium. We
will be interested in the case when without a control, i. e.
when u(t) ≡ 0, this equilibrium is unstable. Further
we will provide conditions for its local stability and give
some ellipsoid estimates for its region of attraction. This
paper extends our previous work [Churilov, 2019c] that
addressed the case, when the system’s operation was re-
stricted to unsaturated widths, namely τn < T . Here
we admit that some of the widths can be saturated, i. e.,
τn = T . Another improvement is that we consider so-
lutions’ behaviors not only at sampling times, but also
between them.

3 Averaging Method
For brevity we will use notation tn = nT .
Our analysis will be based on the Gelig’s version of

the averaging method [Gelig, 1982; Gelig and Churilov,
1998] and some additional mathematical technique from
[Churilov, 2018; Churilov, 2019a; Churilov, 2019c]. The
square of the nth pulse (taking the sign into account) can
be calculated by the formula

vn = 1
T unτn . (7)

Introduce a nonlinear function called equivalent nonlin-
earity

ϕ(σ) =

{
1
σ∗
σ, |σ| 6 σ∗,

sgnσ, |σ| > σ∗.
(8)

Nonlinearity (8) presents a saturation function (see [Tar-
bouriech et al., 2011]). From (6) the following statement
is valid (see [Gelig, 1982]):

vn = ϕ(σ(nT )) (9)

for all n > 0.
Let θ∗ be a number, θ∗ > σ∗. Then

1
θ∗
6
ϕ(σ)

σ
6 1

σ∗
, ∀σ, 0 < |σ| 6 θ∗ (10)

(see Fig. 1). Thus if |σ(nT )| 6 θ∗, we have an instant
quadratic constraint

(σ(nT )− σ∗vn)(θ∗vn − σ(nT )) > 0. (11)

(The term “instant quadratic constraint” was intro-
duced by A. Gelig, it means a quadratic constraint taken
at a discrete time instant.) In [Churilov, 2019c] the lo-
cal stabilization problem was addressed for the special
case θ∗ = σ∗ (that is the analysis was limited to the lin-
earity region of ϕ(σ)). In this paper the general case is
considered.

Let us define two auxiliary scalar functions. Firstly,
take a piecewise constant function

v(t) = vn, tn 6 t < tn+1.

Secondly, consider a function w(t) that is an integrated
error of replacing u(t) with v(t):

w(t) =

∫ t

0

(u(s)− v(s)) ds, t > 0.

σ0

v

1

v
=
σ/
σ ∗

v =
σ/
θ∗

v = ϕ(σ)

σ∗ θ∗

Figure 1. An illustration to the local quadratic constraint (10). The
points (σ, v), v = ϕ(σ), lie in the part of a conic sector with −θ∗ 6
σ 6 θ∗ (filled grey).
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The function w(t) is continuous for t > 0 with w(tn) =
0. Such a function was used in monographs [Gelig and
Churilov, 1993a; Gelig and Churilov, 1998] and in a
number of other publications on the Gelig’s averaging
method. Later functions with the property w(tn) =
w(tn+1) = 0 became known under the name “looped
functions” [Briat and Seuret, 2012]. Notice that the
derivative of w(t) has gaps at t = tn.

By a direct calculation we obtain

w(t) = vn wn(t), tn < t < tn+1,

where (cf. [Chaudenson, 2013])

wn(t) =

{
T−τn
τn

(t− tn), tn 6 t 6 tn + τn,

tn+1 − t, tn + τn 6 t 6 tn+1.

Obviously

0 6 wn(t) 6 T, tn 6 t 6 tn+1,

and hence we get a quadratic constraint

Tv(t)w(t) > w2(t), t > 0. (12)

4 Main Statement
Let θ∗ be a number, θ∗ > σ∗. Introduce the following

(m+ 4)-dimensional rows:

D0 = [ CA CB0 CB 0 0],

D1 = [ C 0 −σ∗ −CB −1],

D2 = [ −C 0 θ∗ CB 1].

(13)

Theorem 1. Assume that there exist a symmetric pos-
itive definite m × m matrix H and nonnegative num-
bers εi, i = 0, . . . , 4, such that linear matrix inequalities
(LMI)

Π + ε2∆2D>0 D0 + ε4(D>1 D2 +D>2 D1) < 0, (14)[
H C>

C θ2∗

]
> 0 (15)

are satisfied. The inequalities are understood in the
sense of definiteness of quadratic forms. Here ∆ =
2T/π, Π is a symmetric (m+ 4)× (m+ 4) matrix with
the block components

Π11 = HA+A>H − ε0µ1µ2C
>
0 C0,

Π12 = HB0 + 1
2ε0(µ1 + µ2)C>0 ,

Π13 = HB, Π14 = −A>HB,
Π15 = ε3A

>C>, Π22 = −ε0, Π23 = 0,

Π24 = −B>HB0, Π25 = ε3 CB0,

Π33 = −1, Π34 = Tε1 −B>HB,
Π35 = ε3 CB, Π44 = −2ε1,

Π45 = 0, Π55 = −ε2.

Here Πij = Πji (1 6 i < j 6 5), > denotes matrix
transpose. Consider an ellipsoid bound space

E = {x ∈ Rm | x>Hx 6 1}.

Then any solution of system (1)–(6) with the initial data
x(0) ∈ E satisfies x(t)→ 0 as t→ +∞. Moreover,

x(t)−Bw(t) ∈ E , ∀ t > 0,

and

|σ(nT )| < θ∗, ∀ n > 0,

|σ(t)| < θ∗ + |CB|T, ∀ t > 0.

The blocks Πij contain parameters (A, B0, C0, µ1,
µ2) of the system to be controlled, as well as param-
eters (B, C, T , σ∗) related to the impulsive control.
The conditions of Theorem 1 present a feasibility prob-
lem of semi-definite programming (with variablesH , εi,
i = 0, . . . , 4) that can be explored by standard software
packages. If inequalities (14), (15) are soluble, they usu-
ally have an infinite number of feasible solutions. To
make a specific choice of E inequalities (14), (15) can be
augmented by a target condition (preserving convexity),
e. g. we can extremize some convex function of H .

5 Proof of the Main Statement
For brevity, introduce notation tn = nT for n > 0.
Inequality (15) and the Schur complement formula

[Boyd et al., 1994] imply

θ2∗ > CH−1C>. (16)

Since

max
x∈E
|Cx| =

√
CH−1C>,

from inequality (16) we obtain

E ⊂ {x ∈ Rm | |Cx| < θ∗}. (17)

Thus if x(tn) ∈ E then |σ(tn)| < θ∗.
Let us prove that if x(0) ∈ E , then x(tn) ∈ E for all

n > 0. This implies that |σ(tn)| < θ∗ for all n > 0.
Introduce an auxiliary function

ξ(t) = σ(t)− σ(tn)− CBw(t), (18)

for tn 6 t < tn+1. This implies

ξ̇(t) = CAx(t) + CB0 f(t) + CB v(t) (19)

for t 6= tn, n > 0. Define an (m+4)-dimensional vector
column

X(t) = col{x(t), f(t), v(t), w(t), ξ(t)}.
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From (13), (19) it is seen that

ξ̇(t) = D0X(t). (20)

Since the right-sided limit ξ(t+n ) = 0, The Wirtinger
inequality implies an integral quadratic constraint (see
[Gelig and Churilov, 1993b; Gelig and Churilov, 1998])∫ t

tn

ξ2(s) ds 6 ∆2

∫ t

tn

ξ̇2(s) ds (21)

for any t, tn 6 t 6 tn+1, here ∆ = 2T/π. With the help
of (20) inequality (21) can be rewritten as∫ t

tn

ξ2(s) ds 6 ∆2

∫ t

tn

(D0X(s))2 ds. (22)

Additionally, we have an obvious constraint∫ t

tn

ξ(s)D0X(s) ds =

∫ t

tn

ξ(s)ξ̇(s) ds = 1
2 ξ

2(t−) > 0

(23)
for any t, tn 6 t 6 tn+1.

Further, we will rearrange instant quadratic constraint
(11) with the help of the vectors X(t), D1, D2.

Lemma 1. Let |σ(tn)| 6 θ∗. Then (11) implies

D1X(t)D2X(t) > 0, tn 6 t < tn+1. (24)

Proof. From (18) we obtain

σ(tn) = σ(t)− ξ(t)− CBw(t). (25)

Substituting (25) into inequality (11) we come to

(σ(t)− ξ(t)− CBw(t)− σ∗v(t))

× (θ∗v(t)− σ(t) + ξ(t) + CBw(t)) > 0,
(26)

which is equivalent to (24). �

Notice that for the special case θ∗ = σ∗ considered
in [Churilov, 2019c] one gets D1 = −D2 and thus
(24) reduces to the equality D1X(t) ≡ 0. This allows
to decrease the number of variables by expressing ξ(t)
through x(t), v(t), w(t).

We will apply the S-procedure with multiple quadratic
forms (see [Gusev and Likhtarnikov, 2006]). For an
(m+ 4)-dimensional column vector

X = col{x, f, v, w, ξ}, (27)

where x is an m-dimensional vector, f , v, w, ξ are
scalars, consider a quadratic form

W (X) = ε0(µ2C0x− f)(f − µ1C0x)

+ 2ε1
(
Tvw − w2

)
+ ε2

[
∆2(D0X)2 − ξ2

]
+ 2ε3 ξ D0X + 2ε4D1XD2X.

(28)

Here εi, i = 0, . . . , 4, are the same as in the formulation
of Theorem 1. It can be easily verified that inequality
(14) implies negative definiteness of the quadratic form

2(x−Bw)>H(Ax+B0f +Bv) +W (X) .

Hence there exists a sufficiently small number δ0 > 0
such that

2(x−Bw)>H(Ax+B0f +Bv)+W (X) 6 −δ0‖X‖2
(29)

for all vector columns X with coordinates (27).
Let us take a quadratic Lyapunov function

V (x,w) = (x−Bw)>H(x−Bw).

Then along the solutions of system (1)–(6) inequality
(29) implies

V̇ (x(t), w(t)) +W (X(t)) 6 −δ0‖X(t)‖2 (30)

for any sampling interval tn < t < tn+1.
From quadratic bounds (3), (12), (24) and integral

quadratic constraints (22), (23) we obtain:∫ t

tn

W (X(s)) ds > 0, ∀t, tn 6 t 6 tn+1, ∀n > 0.

(31)
Notice that (24) needs an additional supposition
|σ(tn)| 6 θ∗ to hold.

Assume that x(tn) ∈ E for some n, and hence
|σ(tn)| 6 θ∗. Recall that w(tn) = w(tn+1) = 0. Inte-
grating (30) over the interval [tn, tn+1] and taking (31)
into account, we get

V (x(tn+1), 0)− V (x(tn), 0)

6 −δ0
∫ tn+1

tn

‖X(t)‖2dt.
(32)

From (32) it follows that x(tn+1) ∈ E and hence
|σ(tn+1)| 6 θ∗. Thus if an initial value is taken so that
x(0) ∈ E , then x(tn) ∈ E and |σ(tn)| 6 θ∗ for all
n > 0. Hence we arrive at the statement: if x(0) ∈ E
then (32) is valid for all n > 0. Since H > 0, for any
n > 0 we have∫ tn

0

‖X(t)‖2dt 6 1
δ0
V (x(0), 0),

so the function ‖X(t)‖ is square integrable, that is
‖X(·)‖ ∈ L2([0,+∞)). In particular, this implies
‖x(·)‖ ∈ L2([0,+∞)).

Inequality (32) also implies that the sequence V (xn, 0)
is bounded for n 6= 0, and hence the sequence x(tn),
n > 0, is also bounded. From (30) we also get

V (x(t), w(t)) 6 V (x(tn), 0), tn 6 t 6 tn+1. (33)
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Thus the function ‖x(t)−Bw(t)‖ is bounded for t > 0.
Since |vn| 6 1, we have |w(t)| 6 T for t > 0, so the
function ‖x(t)‖ is bounded for t > 0. We have |u(t)| 6
1 for t > 0, and

|f(t)| = |ϕ0(σ0(t), t)| 6 max{|µ1|, |µ2|}|σ0(t)|,

so the right-hand side of (1) is bounded for t > 0, and
the function ‖x(t)‖2 is uniformly continuous. Applying
the Barbǎlat’s lemma [Popov, 1973], we conclude that
x(t)→ 0 as t→ +∞.

From (33) and (17) we also obtain that if x0 ∈ E , then
x(t)−Bw(t) ∈ E and

|σ(t)| = |Cx(t)| 6 θ∗ + |CB|T

for t > 0. �
Remark. It was shown previously that under the con-

ditions of Theorem 1 inequality (29) is valid for all x, f ,
v, w, ξ. Let us put w = ξ = 0 in (29). Then (29) implies

2x>H(Ax+B0f +Bv)

+ ε0(µ2C0x− f)(f − µ1C0x)

+ 2ε4(Cx− σ∗v)(θ∗v − Cx)

6 −δ0(‖x‖2 + f2 + v2)

(34)

for all x, f , v. Let us take x = µC0x, v = νCx in (34),
where µ, ν are any numbers satisfying

µ1 6 µ 6 µ2,
1
θ∗
6 ν 6 1

σ∗
. (35)

Since H > 0, from (34) it follows that the matrix

Aµ,ν = A+ µB0C0 + νBC (36)

is Hurwitz stable for any µ, ν from intervals (35). This
requirement is necessary to satisfy the conditions of The-
orem 1.

6 Illustrative Example
Consider a system (with a continuous part from [Sei-

fullaev and Fradkov, 2015])

ẋ1 = −2x1 + sinx2,

ẋ2 = x1 − x2 + 2 sinx2 − u(t).
(37)

Here η(t) = x2(t), ϕ0(η) = sin η. Thus we can take
µ1 = −0.2173, µ2 = 1 in (3).

Originally, the stabilization problems for (37) was
adressed in [Seifullaev and Fradkov, 2015] with the help
of the zero-order hold control. In our recent research
(37) was taken as a benchmark system for different
schemes of stabilization. In [Churilov, 2019a] a system
with a nonuniform sampling and a bounded duty ratio
was analyzed. A sawtooth stabilizing signal was consid-
ered in [Churilov, 2019b]. In all these cases the control
signal was supposed to be unbounded, so a global stabi-
lization (for any initial data) was achieved. In [Churilov,

2019c] a local stabilization of system (37) was studied
under an unsaturated PWM control, and here we treat a
general case of PWM, where saturation is allowed.

The phase portrait of system (37) without a control
(u(t) ≡ 0) is shown in Fig. 2. The zero solution of the
system is unstable (a saddle point). At the same time,
the system has two stable equilibria (foci) with the coor-
dinates (0.425, 2.125) and (−0.425, −2.125).

Let us consider the PWM controlled system (37) with
σ(t) = x2(t). Its continuous-time part can be rewritten
in the form of (1)–(2) with matrix coefficients

A =

[
−2 0

1 −1

]
, B0 =

[
1
2

]
, B =

[
0
−1

]
,

C0 = [0 1], C = C0 .

Define Aµ,ν by formula (36). It is easily verified that
Hurwitz stability of Aµ,ν over all µ, ν satisfying (35)
with µ1 = −0.2173, µ2 = 1 is ensured by the inequality
σ∗ < 2

3 = 0.6666.
Let us take parameters

σ∗ = 0.6, θ∗ = 0.8, T = 0.45

and apply Theorem 1. The YALMIP software package
[Löfberg, 2004] for MATLAB was used to maximize the
objective function tr(H) (the trace of H) over the set of
variablesH , εi, i = 0, . . . , 4, subject to inequalities (14),
(15). An estimate for the domain of attraction of the zero
equilibrium was obtained in the form

E =

{[
x1
x2

]
:

[
x1
x2

]>
H

[
x1
x2

]
6 1

}
(38)

with

H =

[
4.6024 −1.4075
−1.4075 1.9929

]
. (39)

If a solution starts in E , then |x2(t)| 6 1.2 for all t > 0
and |x2(nT )| 6 0.8 for all n > 0.

For the same system parameters, the phase portrait ob-
tained by direct simulation is shown in Fig. 3. The el-
lipsoid estimate for the region of attraction is calculated
from (38), (39).

Notice that since | sinx2| 6 1, |u(t)| 6 1 for all t, and
the matrix A is Hurwitz stable, all the solutions of (37)
are ultimate bounded. More precisely, for any initial data
the following limit relationships hold:

lim sup
t→+∞

|x1(t)| 6 0.5, lim sup
t→+∞

|x2(t)| 6 3.5 .

Recall that η(t) = x2(t). It is easily seen that if we
restrict values of η to |η| 6 3.5, then sectoral bound
(3) is satisfied with µ2 = 1, µ1 = −0.1002. To apply
Theorem 1 with the latter constraint, the initial time t0
has to be taken not zero, but sufficiently large.
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Figure 2. The phase portrait of system (37) without a control
(u(t) ≡ 0). The system has three equilibria — a saddle (in the ori-
gin) and two stable foci. The unstable zero equilibrium is marked by
asterisk.
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Figure 3. The phase portrait of the PWM controlled system in a vicin-
ity of the stable zero equilibrium. The border of the set E is shown by
the dashed line.
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7 Conclusion
Our approach relies on the Gelig’s averaging method

for pulse-modulated systems. For a sector bound non-
linear system under the PWM control, an LMI technique
was proposed to find parameters of the stabilizing feed-
back. The system is stabilized locally, in some neigh-
borhood of the origin, and the proposed Lyapunov-like
method also provides an ellipsoid estimate for this neigh-
borhood.
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