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Abstract: The matrix stiffness of structures under axial 
compression loads is different from the conventional 
matrix stiffness. In slender structures, the stiffness 
changing due to geometric nonlinearity is one very 
important point in bulking analysis. For these structures, 
the stability analysis by dynamic method is usually 
required. The Rayleigh’s method is a simple and easy way 
to consider the geometric nonlinearity effect on slender 
cantilevered structure stability analysis.   
 
1 Introduction 

Structures as chimneys, high reservoirs and 
telecommunication poles are examples of structures that 
have fundamental frequency influenced by the axial load. 
The axial load modifies the structure stiffness and, 
consequently, the structure dynamic behavior.  

It is important to point out that the stiffness matrix of 
the structures with elements under the axial loads is 
different from the conventional stiffness matrix. 
Moreover, there is an important aspect that appears when 
considering the geometric nonlinearity. That is, once 
changed the structure stiffness by the axial load effect, and 
depending on the loading, the structure can reach the 
equilibrium trajectory bifurcation point and will buckle. 
The buckling failure is potentially dangerous and can 
initiate the collapse of many types of engineering 
structures. The stability analysis consists of determining 
the structure stability loss and the corresponding critical 
load. The structure remains in rest before and after 
buckling, except in cases when the stability loss is due to 
transitions from state of rest to motion called kinetic or 
dynamic instability. In dynamic instability analysis, the 
critical load is obtained from the equation of motion by 
means of a non-trivial eigenvalue solution. The stability 
loss occurs when the structure fundamental frequency of 
vibration goes to zero.  

 The dynamic instability investigation is broader than 
other analyses that reject the inertial forces, such as static 
analysis. Hence, since the dynamic method takes into 
account inertial forces in the structure stability analysis 
formulation, the way the elastic systems mass and stiffness 
are distributed becomes important, Gambir (2004).  

Although in a subtle way, the consideration of the 
geometric stiffness is highly nonlinear, since the geometric 
stiffness depends on the internal stresses state in the 
structure, which is only obtained from the deformations 
caused by displacements suffered by the structure. 
Therefore, it is a linearization of a nonlinear problem of a 
certain configuration that is not the initial unloaded one. 

This paper reports an dynamic-experimental research 
about geometric nonlinear cantilever bars buckling. A 
mathematical formulation based on the Rayleigh’s 
Methods and a computational processing using the Finite 
Element Method follow the experimental procedure, 
allowing numerical checking the compression axial load 
influence on  the structure stiffness changing, which leads 
to a fundamental frequency of vibration reduction until the 
limit in stability loss. In addition, the Rayleigh’s Method 
allows the provision of a simple and easy way that can to 
be applied by professional engineers to consider the 
geometric nonlinearity effect on the determination of the 
slender cantilevered structures fundamental frequency of 
vibration. The Rayleigh’s Method allows the provision of 
a simple and easy way that can to be applied by 
professional engineers to consider the geometric stiffness 
effect on the determination of slender cantilevered 
structures fundamental frequency of vibration. 

To this purpose, a set of dynamic laboratory tests with 
reduced models was carried out. These tests were 
developed in the Laboratory of Nonlinear Dynamics of 
Structures of the Polytechnic School of the University of 
São Paulo. 
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2 Reyleigh’s method 
 For a first approach of the nonlinearity effect, the 
structures can perfectly be modeled as a system composed 
of a cantilever bar supporting a representative body mass 
representative fixed at its top. Therefore, it is possible to 
understand these structures behavior by following basic 
concepts. A bar with length L is considered supporting a 
mass at its free end and fixed at its base. Once excited 
with a horizontal force p(t), this system will be subjected 
to both conservatives and non-conservative forces. When 
p(t) ceases acting, the system experiences free vibrations 
and the structure seeks its natural modes of vibration.  

The analytical formulation adopted in this work is 
based on Rayleigh’s Method, created by Lord Rayleigh. 
The basic concept behind the Rayleigh’s Method in 
dynamic analysis is the principle of the energy 
conservation (Clough, 1993). References to the application 
of this method by several researchers to mechanical 
system stability and dynamic analyses can be found in D. 
Addessi (2005), P.A.A. Laura (2006), Selvakumar (2006), 
M.E. Biancolini (2005), X. X. Hu (2004), M. Chiba 
(2003), Y. K. Cheunga (2003). 

For the application of that method, the calculation of 
the cantilever bars natural frequencies will be carried out 
considering a one-degree-of-freedom mass-spring system 
with uniform cross-section, for which a trigonometric 
function is adopted as shape (1), function similar to the 
first buckling mode. This approximation suggests that the 
analysis will only be accurate at a neighborhood of the 
buckling load. 
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The generalized mass M related to top of the bar will be 
given by 
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where m(x) is the mass for unit of length and mi is the 
lumped  mass at one determined position i along the bar. 
The system generalized elastic stiffness, considering 
material elastic linearity will be given by 
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and the generalized geometric stiffness will be given by 
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Making , F0N(x) F F(x)= + 0 e F(x) will be, 
respectively, an external force applied at the top and the 
distributed internal axial force. Thus, 
 

( )0 1N(x) m m L x g= + −⎡ ⎤⎣ ⎦  
(5) 

 
with m0 representing the lumped mass and m1 the 
uniformly distributed mass. The generalized total mass, in 
this context, is then given by 
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The system total generalized stiffness, for 

configurations at the reference configuration 
neighborhood, and considering the compression axial 
force as positive, is given by 

 
e gK K K= −  (7) 

 
Computing the previous expressions and simplifying 

the solution to consider only the degree of freedom 
relative to the horizontal motion, one can find the stiffness 
matrix of the model by Rayleigh’s Method as 
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where E is the material modulus of elasticity, L is the bar 
length, I is the section moment of inertia around the 
perpendicular axes to the motion. The first term of the 
previous equation refers to the elastic stiffness matrix and 
second term of the same equation refers to the geometric 
stiffness matrix.  
 A simple expression for the calculation of the 
fundamental frequency of vibration under geometric non-
linearity, in Hertz, can finally be obtained by square root 
the stiffness mass division, which can be written as 
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3 Laboratory tests 
 Two sets of tests in reduced models have been carried 
out. The first group (Set 1) was subjected to a compression 
force F0 beyond the self-weight, while the second group 
(Set 2) was submitted exclusively to its self-weight. For 
the Set 1, electric strain gages manufactured by Excel 
Sensory (120 Ohm resistance and factor 2.1) were used. 
The adopted set up for the strain gages linking to the 
acquisition system has been composed of a 1/4 bridge and 
three wires. The employed accelerometers have been 
manufactured by Bruel & Kjaer, models 4393 and 4371, 
with characteristics of: sensitivity - 3.1 pC/g and 10 pC/g, 
interval of frequency - 0.1 the 16,500 Hz to Hz and 0.1 the 
12,600 Hz to Hz. For the Set 2, only the 4371 
accelerometer type has been used. 

 The first test samples have been made of a flat metallic 
bar with 1/2"(12.7 mm) x 1/8" (3.175 mm) nominal 



section, to which two masses have been fixed by lateral 
pressure at the free end. Those masses have been added to 
the the accelerometers masses and their magnetic bases 
gives a total value of 1.595 g at the rod top. For the second 
test, a pipe, with 1/2"(12.7 mm) x 3/8" (3.175 mm) 
nominal section and 1.2 mm thickness, has been used. The 
material longitudinal modulus of elasticity “E” has been 
assumed to be 205 GPa for both tests. The connecting rod 
material density has been determined by experiments. The 
obtained density is 8190 kg/m3, while the known density 
value of 7850 kg/m3 has been assumed for the other 
components.  

The metallic masses added to the rod simulate the 
compression axial load action at the system stiffness. 
Thus, the rod-mass system can be compressed by the bar 
self-weight and by the vertical load produced by the mass 
at the top. The apparatus has been fixed to the support in 
order to keep the same standard fixing procedure for all 
models. After being fixed, the support devices as well as 
the models have been horizontally leveled by a bubble 
level. The experimental reference length has been visually 
controlled and its determination has been done by a 
metallic metric ribbon. The length has varied by 5 cm 
steps. A random force, with magnitude necessary and 
enough to put the system in motion, has excited the 
models with several lengths. After the excitation, the 
systems oscillated about the deformed initial equilibrium 
position. It is interesting to mention that in the tests the 
models with longer length of the set 1 have presented a 
static equilibrium configuration rather than the expected 
deformed configuration with respect to the bar axis 
original straight position. This phenomenon has indicated 
that the beam has buckled, and the oscillations have 
occurred about the buckled position.   

The time histories have been recorded for further 
analyses. The analysis of the vibration system has been 
carried out in the frequency domain using the Fast Fourier 
Transform, provided by the AqDAnalysis 7 software. A 
Hanning type compensation window has been used in the 
auto-spectra computation, with the maximum allowed 
resolution for the amount of acquired samples. 

4 Modeling by finite elements 
It is important to remember that, in the finite element 

procedure discretization technique, the domain is divided 
in small, but finite, regions with simple format, joined by 
nodal points, which has the generalized displacements as 
problem unknown. And, this is the main difference 
between the Finite Element Method (FEM) and the 
Rayleigh’s Method previously described in Section 3. In 
the first method, the interpolation functions are only valid 
for small regions, while in the second method, the shape 
function is valid for the entire element.  
 Two analyses utilizing the FEM have been carried out 
with the SAP 2000 software. On one hand, the first 
analysis has been carried out under linear conditions 
(LFEM). On the other hand, the second analysis has been 
carried out under nonlinear conditions (NLFEM), 
considering the so called P-Delta effect on the structure 
static geometric nonlinearity. The analysis under P-Delta 
effect has been carried out for comparative purposes 

because SAP 2000 utilizes a simplified calculation process 
that exactly takes into account the normal force effect on 
the system stiffness. This viable technique can capture 
second order effects because the P-Delta effect can be 
linearized and the problem solution can be directly and 
accurately obtained without iterations. This technique is 
only valid for structures that suffer small lateral 
displacements as compared to their dimensions. Also, the 
technique requires that the applied vertical force to the 
structure due to the structure self-weight remain constant 
during the structure motion. Moreover, this technique only 
allows the inclusion of the structure weight in the negative 
part of the geometric stiffness, discarding the lateral force 
effect, which is worthless, Cook (2002), Wilson (1987) 
and Rutemberg (1982). Finally, this technique can easily 
be programmed in the FEM environment demanding 
reduced computational efforts.  

5 Obtained results 
The obtained test results are shown below, as well as 

the results from the Rayleigh and FEM.  
  

Table 1. Experimental and Rayleigh – Set 1 
Frequencies (Hz) Differences Length

(m) Experimental 
results 

Solution of 
Rayleigh Hz    % 

0.20 6.3477 6.3276 0.020 0.32 
0.25 4.4556 4.4729 -0.017 0.39 
0.30 3.2959 3.3520 -0.056 1.67 
0.35 2.5024 2.6122 -0.110 4.20 
0.40 1.9836 2.0925 -0.109 5.20 
0.45 1.6479 1.7096 -0.062 3.61 
0.50 1.3428 1.4167 -0.074 5.21 
0.55 1.1292 1.1855 -0.056 4.75 
0.60 0.9155 0.9983 -0.083 8.29 
0.65 0.7935 0.8429 -0.049 5.86 
0.70 0.6104 0.7110 -0.101 14.15 
0.75 0.4883 0.5965 -0.108 18.14 
0.80 0.3662 0.4946 -0.128 25.95 
0.85 0.3052 0.4011 -0.096 23.90  

 
Table 2. Experimental and NLFEM – Set 1 

Frequencies (Hz) Differences Length
(m) Experimental 

results 
EFM 

Nonlinear Hz    % 

0.20 6.3477 6.2810 0.067 1.06 
0.25 4.4556 4.4405 0.015 0.34 
0.30 3.2959 3.3281 -0.032 0.97 
0.35 2.5024 2.5940 -0.092 3.53 
0.40 1.9836 2.0783 -0.095 4.56 
0.45 1.6479 1.6983 -0.050 2.97 
0.50 1.3428 1.4077 -0.065 4.61 
0.55 1.1292 1.1783 -0.049 4.17 
0.60 0.9155 0.9925 -0.077 7.76 
0.65 0.7935 0.8383 -0.045 5.34 



0.70 0.6104 0.7073 -0.097 13.70 
0.75 0.4883 0.5936 -0.105 17.74 
0.80 0.3662 0.4924 -0.126 25.62 
0.85 0.3052 0.4011 -0.096 23.90  

 
Table 3. Experimental and LFEM – Set 1 

Frequencies (Hz) Differences Length 
(m) Experimental 

results 
EFM 

Linear Hz % 

0.20 6.3477 6.3989 -0.051 0.80 
0.25 4.4556 4.5733 -0.118 2.57 
0.30 3.2959 3.4749 -0.179 5.15 
0.35 2.5024 2.7543 -0.252 9.15 
0.40 1.9836 2.2517 -0.268 11.90 
0.45 1.6479 1.8848 -0.237 12.57 
0.50 1.3428 1.6073 -0.265 16.46 
0.55 1.1292 1.3915 -0.262 18.85 
0.60 0.9155 1.2198 -0.304 24.95 
0.65 0.7935 1.0805 -0.287 26.56 
0.70 0.6104 0.9657 -0.355 36.79 
0.75 0.4883 0.8698 -0.381 43.86 
0.80 0.3662 0.7886 -0.422 53.56 
0.85 0.3052 0.7192 -0.414 57.56 

 
Table 4. Experimental and Rayleigh – Set 2 

Frequencies (Hz) Differences Length 
(m) Experimental 

results 
Solution of 
Rayleigh Hz    

% 
1.00 8.1790 8.1717 0.007 0.09
1.05 7.4770 7.4809 -0.004 0.05
1.10 6.6220 6.8693 -0.247 3.60
1.15 6.3170 6.3259 -0.009 0.14
1.20 5.7680 5.8414 -0.073 1.26
1.25 5.1880 5.4080 -0.220 4.07
1.30 4.8830 5.0191 -0.136 2.71
1.35 4.5170 4.6690 -0.152 3.26
1.40 4.3030 4.3529 -0.050 1.15
1.45 3.9060 4.0666 -0.161 3.95
1.50 3.6930 3.8066 -0.114 2.98
1.55 3.5100 3.5699 -0.060 1.68
1.60 3.2960 3.3537 -0.058 1.72
1.65 3.0820 3.1559 -0.074 2.34
1.70 2.8990 2.9745 -0.075 2.54
1.75 2.7470 2.8076 -0.061 2.16
1.80 2.5940 2.6539 -0.060 2.26
1.85 2.4720 2.5120 -0.040 1.59
1.90 2.2990 2.3806 -0.082 3.43
1.95 2.1970 2.2589 -0.062 2.74
2.00 2.1060 2.1458 -0.040 1.86
2.05 1.9840 2.0406 -0.057 2.77
2.10 1.8920 1.9426 -0.051 2.60
2.15 1.8010 1.8511 -0.050 2.71
2.20 1.7240 1.7655 -0.042 2.35

2.25 1.6480 1.6854 -0.037 2.22
2.30 1.5560 1.6103 -0.054 3.37
2.35 1.4950 1.5398 -0.045 2.91
2.40 1.4340 1.4735 -0.039 2.68
2.45 1.3730 1.4111 -0.038 2.70
2.50 1.3120 1.3522 -0.040 2.97
2.55 1.2510 1.2967 -0.046 3.52
2.60 1.2210 1.2442 -0.023 1.86
2.65 1.1600 1.1945 -0.034 2.89
2.70 1.1290 1.1475 -0.018 1.61
2.75 1.0680 1.1029 -0.035 3.16
2.80 1.0380 1.0605 -0.023 2.13
2.85 0.9920 1.0203 -0.028 2.78
2.90 0.9770 0.9821 -0.005 0.52
2.95 0.9160 0.9457 -0.030 3.14
3.00 0.8850 0.9110 -0.026 2.85
3.05 0.8540 0.8779 -0.024 2.72
3.10 0.8240 0.8463 -0.022 2.64
3.15 0.7930 0.8162 -0.023 2.84
3.20 0.7630 0.7873 -0.024 3.09
3.25 0.7320 0.7597 -0.028 3.64
3.30 0.7170 0.7332 -0.016 2.21
3.35 0.6920 0.7079 -0.016 2.24
3.40 0.6590 0.6835 -0.025 3.59
3.45 0.6410 0.6602 -0.019 2.91
3.50 0.6100 0.6377 -0.028 4.35
3.55 0.5900 0.6162 -0.026 4.25
3.60 0.5700 0.5954 -0.025 4.26
3.65 0.5650 0.5754 -0.010 1.80
3.70 0.5340 0.5561 -0.022 3.97
3.75 0.5190 0.5375 -0.018 3.44
3.80 0.5040 0.5195 -0.016 2.99
3.85 0.4880 0.5022 -0.014 2.83
3.90 0.4730 0.4854 -0.012 2.56

  
Table 5. Experimental and NLFEM – Set 2 

Frequencies (Hz) Differences Length
(m) Experimental 

results 
EFM 

Nonlinear Hz    
% 

1.00 8.1790 8.2290 -0.050 0.61
1.05 7.4770 7.5029 -0.026 0.34
1.10 6.6220 6.8633 -0.241 3.52
1.15 6.3170 6.2981 0.019 0.30
1.20 5.7680 5.7969 -0.029 0.50
1.25 5.1880 5.3510 -0.163 3.05
1.30 4.8830 4.9528 -0.070 1.41
1.35 4.5170 4.5960 -0.079 1.72
1.40 4.3030 4.2752 0.028 0.65
1.45 3.9060 3.9859 -0.080 2.00
1.50 3.6930 3.7242 -0.031 0.84
1.55 3.5100 3.4867 0.023 0.67
1.60 3.2960 3.2705 0.025 0.78
1.65 3.0820 3.0733 0.009 0.28



1.70 2.8990 2.8928 0.006 0.21
1.75 2.7470 2.7273 0.020 0.72
1.80 2.5940 2.5751 0.019 0.74
1.85 2.4720 2.4348 0.037 1.53
1.90 2.2990 2.3053 -0.006 0.27
1.95 2.1970 2.1854 0.012 0.53
2.00 2.1060 2.0743 0.032 1.53
2.05 1.9840 1.9710 0.013 0.66
2.10 1.8920 1.8756 0.016 0.88
2.15 1.8010 1.7860 0.015 0.84
2.20 1.7240 1.7023 0.022 1.27
2.25 1.6480 1.6240 0.024 1.48
2.30 1.5560 1.5507 0.005 0.34
2.35 1.4950 1.4819 0.013 0.88
2.40 1.4340 1.4173 0.017 1.18
2.45 1.3730 1.3565 0.017 1.22
2.50 1.3120 1.2992 0.013 0.99
2.55 1.2510 1.2451 0.006 0.47
2.60 1.2210 1.1941 0.027 2.25
2.65 1.1600 1.1458 0.014 1.24
2.70 1.1290 1.1001 0.029 2.63
2.75 1.0680 1.0568 0.011 1.06
2.80 1.0380 1.0157 0.022 2.20
2.85 0.9920 0.9766 0.015 1.57
2.90 0.9770 0.9395 0.037 3.99
2.95 0.9160 0.9042 0.012 1.31
3.00 0.8850 0.8718 0.013 1.51
3.05 0.8540 0.8397 0.014 1.70
3.10 0.8240 0.8091 0.015 1.84
3.15 0.7930 0.7799 0.013 1.68
3.20 0.7630 0.7519 0.011 1.48
3.25 0.7320 0.7251 0.007 0.95
3.30 0.7170 0.6995 0.018 2.50
3.35 0.6920 0.6749 0.017 2.53
3.40 0.6590 0.6513 0.008 1.18
3.45 0.6410 0.6287 0.012 1.96
3.50 0.6100 0.6069 0.003 0.51
3.55 0.5900 0.5860 0.004 0.69
3.60 0.5700 0.5658 0.004 0.74
3.65 0.5650 0.5464 0.019 3.41
3.70 0.5340 0.5277 0.006 1.20
3.75 0.5190 0.5096 0.009 1.84
3.80 0.5040 0.4922 0.012 2.41
3.85 0.4880 0.4753 0.013 2.67
3.90 0.4730 0.4590 0.014 3.05 

 
Table 6. Experimental and LFEM – Set 2 

Frequencies (Hz) Differences Length 
(m) Experimental 

results 
EFM 

Nonlinear Hz    %

1.00 8.1790 8.2290 -0.050 0.61
1.05 7.4770 7.5029 -0.026 0.34
1.10 6.6220 6.8633 -0.241 3.52

1.15 6.3170 6.2981 0.019 0.30
1.20 5.7680 5.7969 -0.029 0.50
1.25 5.1880 5.3510 -0.163 3.05
1.30 4.8830 4.9528 -0.070 1.41
1.35 4.5170 4.5960 -0.079 1.72
1.40 4.3030 4.2752 0.028 0.65
1.45 3.9060 3.9859 -0.080 2.00
1.50 3.6930 3.7242 -0.031 0.84
1.55 3.5100 3.4867 0.023 0.67
1.60 3.2960 3.2705 0.025 0.78
1.65 3.0820 3.0733 0.009 0.28
1.70 2.8990 2.8928 0.006 0.21
1.75 2.7470 2.7273 0.020 0.72
1.80 2.5940 2.5751 0.019 0.74
1.85 2.4720 2.4348 0.037 1.53
1.90 2.2990 2.3053 -0.006 0.27
1.95 2.1970 2.1854 0.012 0.53
2.00 2.1060 2.0743 0.032 1.53
2.05 1.9840 1.9710 0.013 0.66
2.10 1.8920 1.8756 0.016 0.88
2.15 1.8010 1.7860 0.015 0.84
2.20 1.7240 1.7023 0.022 1.27
2.25 1.6480 1.6240 0.024 1.48
2.30 1.5560 1.5507 0.005 0.34
2.35 1.4950 1.4819 0.013 0.88
2.40 1.4340 1.4173 0.017 1.18
2.45 1.3730 1.3565 0.017 1.22
2.50 1.3120 1.2992 0.013 0.99
2.55 1.2510 1.2451 0.006 0.47
2.60 1.2210 1.1941 0.027 2.25
2.65 1.1600 1.1458 0.014 1.24
2.70 1.1290 1.1001 0.029 2.63
2.75 1.0680 1.0568 0.011 1.06
2.80 1.0380 1.0157 0.022 2.20
2.85 0.9920 0.9766 0.015 1.57
2.90 0.9770 0.9395 0.037 3.99
2.95 0.9160 0.9042 0.012 1.31
3.00 0.8850 0.8718 0.013 1.51
3.05 0.8540 0.8397 0.014 1.70
3.10 0.8240 0.8091 0.015 1.84
3.15 0.7930 0.7799 0.013 1.68
3.20 0.7630 0.7519 0.011 1.48
3.25 0.7320 0.7251 0.007 0.95
3.30 0.7170 0.6995 0.018 2.50
3.35 0.6920 0.6749 0.017 2.53
3.40 0.6590 0.6513 0.008 1.18
3.45 0.6410 0.6287 0.012 1.96
3.50 0.6100 0.6069 0.003 0.51
3.55 0.5900 0.5860 0.004 0.69
3.60 0.5700 0.5658 0.004 0.74
3.65 0.5650 0.5464 0.019 3.41
3.70 0.5340 0.5277 0.006 1.20
3.75 0.5190 0.5096 0.009 1.84



3.80 0.5040 0.4922 0.012 2.41
3.85 0.4880 0.4753 0.013 2.67
3.90 0.4730 0.4590 0.014 3.05

6 Conclusions 
  To study the buckling phenomenon in slender 

structures under nonlinear effects, taking into account the 
axial forces influence on the structures natural frequencies, 
this work has employed a simplified analytical solution 
banded on the Rayleigh’s Method, which has been used as 
a reference for the FEM application. Two sets of tests in 
reduced models, have been carried out in the Laboratory 
of Nonlinear Dynamics of the Polytechnic School of the 
University of São Paulo. 

 For the first test, the average difference between the 
experimental results and the Rayleigh solution is 8.69%. It 
is important to point out that the models with longer 
length have presented a static equilibrium configuration 
rather than the expected deformed configuration with 
respect to the bar axis original straight position, and have 
oscillated about his initial configuration, indicating that 
the beam has buckled It is also important to point out that 
in a few tests there has been some plastic deformation of 
the material. Both situations have not been contemplated 
by the analytical hypothesis. If the experimental results 
from these cases had been discarded, the average 
differences between the experimental results and the 
Rayleigh solution for the compression force and structure 
self-weight would have been reduced to 2.94%. 

Numerical simulations by finite elements of the same 
models, considering linear and nonlinear behavior under 
P-Delta effect, have verified that the difference between 
the linear analysis and the nonlinear analysis results 
exponentially grows; reaching 44%, with the average 
differences exceeding 17%. If the comparison had been 
done between the LFEM solution and the experimental 
results of frequency would have reached 57%, and the 
average differences would have been 22.91%. Similar 
behavior has been observed in the second set of tests, with 
average differences of 5.02% and 5.04% between the 
experimental results and the LFEM and NLFEM, 
respectively. With respect to the Rayleigh’s Method, a 
difference of 2.06% has been observed. This result has 
revealed a less geometric stiffness effect on the natural 
frequencies of vibration, due to the fact that the tests have 
been conducted until the possible length of 3.90m of the 
structure, with buckling length of 5.80m. The first set of 
tests has revealed a distinct situation, with a 1.00m 
expected buckling length, the structure has reached only 
the length of 0.85m. It is important to remember that both 
real structures and laboratory models possess tolerable 
imperfections.  

The structure natural frequency can suffer significant 
alteration if calculated with the inclusion of the negative 
part of the geometric stiffness due to the compression 
force. The experimental results have confirmed the 
nonlinear analytical and numerical straight bar buckling 
results.  
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