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Abstract
The networked multi-agent systems that they are inter-

connected via communication channels have great ap-
plicability in multiple areas, such as power grids, bioin-
formatics, sensor networks, vehicles, robotics and neu-
roscience, for example. Consequently, they have been
widely studied by scientists in different fields in partic-
ular in the field of control theory. Recently has taken
interest to analyze the control properties as consensus
controllability and observability of multi-agent dynami-
cal systems motivated by the fact that the architecture of
communication network in engineering multi-agent sys-
tems is usually adjustable. In this paper, we analyze how
to improve the control properties in the case of multia-
gent linear time-invariant dynamical systems.
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1 Introduction
Controllability and observability are two of the well-

known central concepts of control system theory. They
are particularly important for practical implementa-
tions ([Chen, 1970], [Garcia-Planas, Tarragona, 2016],
[Heniche, Kamwa, 2002], [Kundur, 1994], [Liu, Slotine,
Barabási, 2011]).

In recent years has grown the interest in the study of
control multi-agent systems, as well as the increasing
interest in distributed control and coordination of net-
works consisting of multiple autonomous agents. It is
due to that they appear in different areas, and there are
an amount of bibliography as [Saber and Murray, 2004],
[Wang, Cheng, and Hu, 2008], [Xie and Wang, 2006],
[Rahmani, Ji, Mesbahi, and Egerstedt, 2009].

The control of linear dynamical systems is a strategy
that the brain uses to control its own intrinsic dynam-

ics. The brain structure can be modelled as a networked
system that is expressly interesting system to control be-
cause of the role of the underlying architecture, which
predisposes some components to particular control mo-
tions. The concept of brain cognitive control defined by
neuroscientists is related to the mathematical concept of
control defined by physicists, mathematicians, and engi-
neers, where the state of a complex system can be ad-
justed by a particular input. Recent Advances in Neu-
roscience show that brain cognitive function is driven
by dynamic interactions between large-scale neural cir-
cuits or networks, enabling behaviour. The use of tools
from control and network theories permit a mechanis-
tic description for how the brain moves between cogni-
tive states drawn from the network organization of white
matter that found in the deepest tissues of the brain, [Gu
et Al., 2015].

It has been shown that controllability analysis of the
neural network is key when it comes to the mechanistic
explanation of how the brain operates in different cogni-
tive states. According to the different point of view of
controllability, the average controllability describes the
role of a brain network’s node in driving the system to
many easily reachable states. On the other hand, the
modal controllability is employed to identify the states
that are difficult to control. It has recently been seen that
the exact controllability permit us to determine the areas
of the brain or nodes in the connectivity graph (structural
or functional) that can act as drivers and move the sys-
tem (brain) into specific states of action [Meyer-Bäse et
Al., 2020].

In this paper the controllability and observability char-
acter of multiagent systems consisting of k agents having
identical linear dynamic mode, with dynamics defined
as:

ẋi = Aix
i +Biu

i

ẏi = Cix
i

}
i = 1, . . . , k (1)
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are analyzed. In particular we consider the case where
the multiagent systems consisting of k agents having
identical linear dynamic mode, with dynamics.

2 Preliminaries
The topology of the system is defined by means an in-

direct graph. Graph models are actually common used
in representations of networks We consider a graph G =
(V, E) of order k with the set of vertices V = {1, . . . , k}
and the set of edges E = {(i, j) | i, j ∈ V} ⊂ V × V .

Given an edge (i, j) i is called the parent node and j
is called the child node and j is in the neighbor of i,
concretely we define the neighbor of i and we denote it
by Ni to the set Ni = {j ∈ V | (i, j) ∈ E}.

The graph is called undirected if verifies that (i, j) ∈ E
if and only if (j, i) ∈ E . The graph is called connected if
there exists a path between any two vertices, otherwise
is called disconnected.

Figure 1. Undirected connected graph

Associated to the graph we can consider the Laplacian
matrix of the graph defined in the following manner

L = (lij) =

 |Ni| if i = j
−1 if j ∈ Ni

0 otherwise
(2)

Remark 2.1. The following properties are verified.

i) If the graph is undirected then the matrix L is sym-
metric, then there exist an orthogonal matrix P such
that PLP t = D.

ii) If the graph is undirected then 0 is an eigenvalue of
L and (1, . . . , 1)t is the associated eigenvector.

iii) If the graph is undirected and connected the eigen-
value 0 is simple.

For more details about graph theory see [West, 2007].
About matrices, we need to remember Kronecker prod-

uct of matrices because it will be useful in our study.
Given a couple o matricesA = (aij) ∈Mn×m(C) and

B = (bij) ∈ Mp×q(C), remember that the Kronecker
product is defined as follows.

Definition 2.1. Let A = (aij) ∈ Mn×m(C) and B ∈
Mp×q(C) be two matrices, the Kronecker product of A
and B, write A⊗B, is the matrix

A⊗B = (aijB) ∈Mnp×mq(C)

Kronecker product verifies the following properties

1) (A+B)⊗ C = (A⊗ C) + (B ⊗ C)
2) A⊗ (B + C) = (A⊗B) + (A⊗ C)
3) (A⊗B)⊗ C = A⊗ (B ⊗ C)
4) (A⊗B)t = At ⊗Bt

5) If A ∈ Gl(n;C) and B ∈ Gl(p;C)), then A⊗B ∈
Gl(np;C)) and (A⊗B)−1 = A−1 ⊗B−1

6) If the products AC and BD are possible, then (A⊗
B)(C ⊗D) = (AC)⊗ (BD)

Corollary 2.1. The vector 1k ⊗ v is an eigenvector cor-
responding to the zero eignevalue of L ⊗ In.

Proof.

(L ⊗ In)(1k ⊗ v) = L1k ⊗ v = 0⊗ v = 0

Consequently, if {e1, . . . , en} is a basis for Cn, then
1k ⊗ ei is a basis for the nullspace of L ⊗ In.

Associated to the Kronecker product, can be defined
the vectorizing operator that transforms any matrix A
into a column vector, by placing the columns in the ma-
trix one after another,

Definition 2.2. LetX = (xij) ∈Mn×m(C) be a matrix,
and we denote xi = (x1i , . . . , x

n
i )

t for 1 ≤ i ≤ m the
i-th column of the matrix X . We define the vectorizing
operator vec, as

vec :Mn×m(C) −→Mnm×1(C)
X −→

(
x1 x2 . . . xm

)t
Obviously, vec is an isomorphism.

See [Lancaster and Tismenetsky, 1985] for more infor-
mation and properties.

3 Control Properties
Definition 3.1. The dynamical system ẋ = Ax + Bu is
said to be controllable if for every initial condition x(0)
and every vector x1 ∈ Rn, there exist a finite time t1 and
control u(t) ∈ Rm, t ∈ [0, t1], such that x(t1) = x1.

This definition requires only that any initial state x(0)
can be steered to any final state x1 at time t1. However,
the trajectory of the dynamical system between 0 and
t1 is not specified. Furthermore, there is no constraints
posed on the control vector u(t) and the state vector x(t).

It is easier to compute the controllability using the fol-
lowing matrix

C =
(
B AB A2B . . . An−1B

)
. (3)

called controllability matrix, thanks to the following
well-known result.
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Theorem 3.1. The dynamical system ẋ = Ax + Bu is
controllable if and only if rank C = n.

As we says, controllability of the dynamical system
ẋ = Ax + Bu implies that each initial state can be
steered to 0 on a finite time-interval. If only is required
that this to happen asymptotically for t → ∞, we have
the following concept.

Definition 3.2. The system ẋ = Ax+ Bu is called sta-
bilizable if for each initial state x(0) ∈ Rn there exists
a (piece-wise continuous) control input u : [0,∞) −→
Rm such that the state-response with x(0) verifies

lim
t→∞

x(t) = 0.

Remark 3.1. i) All controllable systems are stabiliz-
able but the converse is false.

ii) If the matrix A in the system ẋ = Ax+ Bu is Hur-
witz then, the system is stabilizable.

It is important the following result

Theorem 3.2. The system ẋ = Ax+ Bu is stabilizable
if and only if there exists some feedback F such that ẋ =
(A−BF )x is asymptotically stable.

A dual concept of controllability is the observability.

Definition 3.3. The dynamical system ẋ = Ax +
Bu, y = Cx is said to be observable at t0 if there exist a
finite time t1 > t0 such that for any vector x0 ∈ Rn,
at time t0 the knowledge of the control u(t) ∈ Rm,
t ∈ [t0, t1], and the output yt over the time [t0, t1] suf-
fices to determine the state x0.

It is easier to compute the observability using the follow-
ing matrix

O =


C
CA
CA2

...
CAn−1

 . (4)

called observability matrix, thanks to the following well-
known result.

Theorem 3.3. The dynamical system ẋ = Ax + Bu,
y = Cx is observable if and only if rankO = n.

(For more information about control properties, see
[Antoulas, 2013], [Chen, 1970], for example)

3.1 Controllability and observability of multiagent
systems

Writing

X =

x
1(t)
...

xk(t)

 , Ẋ =

ẋ
1(t)
...

ẋk(t)

 , U =

u
1(t)
...

uk(t)

 ,

A =

A1

. . .
Ak

 , B =

B1

. . .
Bk

 ,

C =

C1

. . .
Ck

 ,Y =

y
1(t)
...

yk(t)

 .

Following this notation we can describe the multisys-
tem as a system:

Ẋ = AX + BU
Y = CX

}
Clearly,

- this system is controllable if and only if each sub-
system is controllable, and, in this case, there exist
a feedback in which we obtain the desired solution.
- this system is observable if and only if each sub-
system is observable, and, in this case, there exist a
output injection in which we obtain the desired so-
lution.

4 Consensus
Now, we consider the case where the multiagent sys-

tems consisting of k agents having identical linear dy-
namic mode, with dynamics and we are interested in take
the output of the system to a reference value and keep it
there, we can ensure that if the system is controllable.

Roughly speaking, we can define the consensus as a
collection of processes such that each process starts with
an initial value, where each one is supposed to output the
same value and there is a validity condition that relates
outputs to inputs. More concretely, the consensus prob-
lem is a canonical problem that appears in the coordina-
tion of multi-agent systems. The objective is that Given
initial values (scalar or vector) of agents, establish con-
ditions under which through local interactions and com-
putations, agents asymptotically agree upon a common
value, that is to say: to reach a consensus.

Definition 4.1. Consider the system 1. We say that the
consensus is achieved using local information if there
is a state feedback ui = K

∑
j∈Ni

(xi − xj) and an
estimator WC

∑
j∈Ni

(xi − xj), such that

lim
t→∞

‖xi − xj‖ = 0, 1 ≤ i, j ≤ k.
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The closed-loop system obtained under these feedback
and output injection is as follows

Ẋ = AX + (BK +WC)Z,
Y = CX

}
where X , Ẋ , A, B, C are as before and

W =

W
. . .

W

 ,

K =

K
. . .

K

 , Z =


∑

j∈N1
x1 − xj
...∑

j∈Nk
xk − xj

 .

Following this notation we can conclude the following.

Proposition 4.1. The closed-loop system can be de-
scribed as

Ẋ = ((Ik ⊗A) + (Ik ⊗ (BK +WC))(L ⊗ In))X
Y = CX

(5)

Assuming X (0) = 0, the equation 5 can be solved as

Y(t) =∫ t

0
Ce((Ik⊗A)+(Ik⊗(BK+WC))(L⊗In))(t−s)X (s)ds.

(6)
In our particular setup, we have that there exists an or-

thogonal matrix P ∈ Gl(k,R) such that PLP t = D =
diag (λ1, . . . , λk), (λ1 ≥ . . . ≥ λk).

Corollary 4.1. The closed-loop system can be described
in terms of the matrices A, B, C, the feedback K, the
output injection W and the eigenvalues of L.

Proof. Following properties of Kronecker product we
have that

(P ⊗ In)(Ik ⊗A)(P t ⊗ In) = (Ik ⊗A)
(P ⊗ In)(Ik ⊗ (BK +WC))(P t ⊗ In) =
(Ik ⊗ (BK +WC))
(P ⊗ In)(L ⊗ In)(P t ⊗ In) = (D ⊗ In)

and calling X̂ = (P ⊗ In)X , we have

˙̂X =((Ik ⊗A) + (Ik ⊗ (BK +WC))(D ⊗ In))X̂ .

Equivalently,

˙̂X =

A+ λ1(BK +WC)
. . .

A+ λk(BK +WC)

X̂.
(7)

Corollary 4.2. The system 1 is consensus stabilizable if
and only if the systems A + λi(BK +WC) are stable
by means the same K and W .

4.1 Controllability of Multi-Agent Systems with Ex-
ternal Feedback

Let us consider a group of k agents having identical
dynamical mode. The dynamic of each agent is given by
the linear dynamical systems as 1 with external control
inputs, that is to say:

ẋi = Axi +Bui + Euiext
yi = Cxi

}
, 1 ≤ i ≤ k (8)

A ∈ Mn(R), B ∈ Mn×m(R), E ∈ Mn×q(R), C ∈
Mp×n(R) xi(t) ∈ Rn, ui(t) ∈ Rm, uiext(t) ∈ Rq the
external control input of the agent i, 1 ≤ i ≤ k.

Given the following protocol as 4.1 where K is the
feedback gain matrix and W the output injection, and
defining

Uext =

u
1
ext(t)

...
ukext(t)

 , E =

E . . .
E


In the particular case where all agents on the multi-

agent system, have an identical linear dynamic mode, we
have the following proposition

Proposition 4.2. With these notations the system can be
described as

˙̂X =((Ik⊗A)+(Ik⊗(BK+WC))(D⊗In))X̂+EUext(t).
(9)

The expression of the multi-agent system as a linear
system permit us to adapt the structural controllability
concept given for linear dynamical systems [Lin, 1974],
to the multi-agent system.

Definition 4.2. The multi-agent system 9 is said to be
structurally controllable if one can change the non-zero
entries of the matrix A for some particular values, near
of the initial ones, from R such that system 9 is control-
lable in the classical sense.

It is easy to prove that
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Proposition 4.3. The multi-agent system 9 is struc-
turally controllable if and only if,

rank (
(
A(ε) + λi(BK +WC)− αIn E(ε)

)
= n,

∀ 0 ≤ i ≤ k and for some small parameters εi 6= 0

whereA(ε) andE(ε) are matrices depending on param-
eters ε = (εi)

(one parameter for each nonzero entry of matrices A
and E).

Suppose now, that the system 5 is not controllable but
it is possible to introduce some external control. Then,
we ask for the minimal number of controls that are nec-
essary to make the system controllable. This number is
called exact controllability.

Definition 4.3. The exact controllability of the system 5
is the minimal number of columns of the matrix E making
the system 9 controllable.

5 Conclusion
In this paper, we have analyzed the consensus control-

lability and observability properties in the case of multia-
gent linear systems having all agents the same dynamics.
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