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Abstract 

Dynamic responses of a linear oscillator 
coupled to a nonlinear energy sink (NES) under 
harmonic forcing in the regime of 1:1 resonance 
are investigated. Primary attention is paid to 
detailed investigation of so-called strongly 
modulated response (SMR), which is not related 
to the fixed points of average modulation 
equations of the system. It is demonstrated that 
the SMR is related to a relaxation – type motion 
and its description may be reduced to one – 
dimensional discrete mapping of a subset at a 
fold line of slow invariant manifold of the 
system. 
 
1  Introduction 

Recently it has been demonstrated that 
various systems comprised of linear 
substructures and strongly nonlinear attachments 
exhibit localization and irreversible transient 
transfer (pumping) of energy to prescribed 
fragments of structure dependent on initial 
conditions and external forcing [Gendelman 
O.V. (2001); Gendelman O.V., Vakakis A.F., 
Manevitch L.I. and McCloskey R., (2001); 
Vakakis A.F. and Gendelman O.V. (2001); 
Vakakis A.F. (2001)]. Addition of a relatively 
small and spatially localized attachment leads to 
essential changes in the properties of the whole 
system. Unlike common linear and weakly 
nonlinear systems, systems with strongly  
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nonlinear elements are able to react efficiently on 
the amplitude characteristics of the external 
forcing in a wide range of frequencies [Vakakis 
A.F., Manevitch L.I., Gendelman O., Bergman 
L. (2003)]. Thus, the systems under 
consideration give rise to a new concept of 
nonlinear energy sink (NES). 
In papers [Gendelman O.V., Starosvetsky Y. 
(2006); O.V. Gendeman, Y.Starosvetsky, M. 
Feldman (2007); Y.Starosvetsky , O.V. 
Gendelman (2007)] it was established that 
combination of essential nonlinearity and strong 
mass asymmetry brings about a possibility of 
response regimes qualitatively different from 
steady – state and weakly modulated responses 
existing in the vicinities of fixed points of 
averaged flow equations in conditions of 1:1 
resonance. Thus, they cannot be described with 
the help of local analysis of the averaged flow 
equations. 
The goal of present paper is to develop the 
analytic approach allowing one to describe 
frequency dependence and global bifurcations of 
the regime of SMR.  Appropriate analytic and 
numeric tools are presented in Sections 2 and 3. 
Comparisons with direct numeric simulations of 
averaged and full flow are presented in Section 
4, followed by concluding remarks in Section 5. 
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2 Description of the model and necessary 
conditions for the regime of SMR 
 

The system under consideration is described 
by the following equations: 
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where 1y  and 2y are the displacements of the 

linear oscillator and the attachment respectively, 
ελ  is the damping coefficient, Aε  is the 
amplitude of external force andεσ  is the 

frequency detuning parameter. 1ε <<  is a small 
parameter which establishes the order of 
magnitude for coupling, damping,  amplitude of 
the external force, detuning  and mass of the 
attachment.  
Coefficients: , ,A λ σ  are adopted to be of order 
unity. Rigidity of the nonlinear spring is adopted 

to be equal to
4
3
ε  and linear frequency of the 

primary oscillator – close to unity.  
Successive changes of variables provide: 
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Substitution of new variables and averaging over 
one forcing period, yields: 
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Fixed points of Equations (3) correspond to 
periodic responses of the system described by 
Equation (1).  By simple algebraic manipulations 
fixed points of (3) are obtained from: 
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Figure 1. Bold red lines refer to the unstable 
regions of the periodic solutions when the thin 
lines refer to the stable regions  
 

System (4) has somewhat special form - the 
time derivative in the first equation is 
proportional to the small parameter and thus the 
time evolution of variable φ1 can be considered 
as slow compared to φ2. This peculiarity means 
that the dynamics of System (4) in 4-dimensional 
real state space may be presented in terms of 2 
"fast" and 2"slow" real variables, thus giving a 
chance of tractable global description.  
By simple manipulations, System (3) may be 
reduced to single second – order ODE: 
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Multiple scale expansion is introduced as: 
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(6) 
Substituting (6) into (5) and equating the like 
powers of ε  one obtains equations for zero and 
the first order approximations:: 
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                                 (7) 
The first equation of (7) describes "fast" 

evolution of the averaged system. It can be 
trivially integrated:  
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where C is arbitrary function of higher – order 
time scales. Approximations of higher orders are 
not used in current analysis. Then for the sake of 
brevity only dependence on time scales τ0 and τ1 
will be denoted explicitly below. Fixed points 

1( )τΦ of Equation (8) depend only on time 

scale τ1 and obey algebraic equation: 
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Equation (9) is easily solved by taking 
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trivial calculations: 
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Figure 2 demonstrates projection of the two – 
dimensional SIM on the plane (N, C), the fold 
lines correspond to the points of maximum and 
minimum. 

 Figure 2 Projection of the slow invariant 
manifold of the system in accordance with 
Equation (10), λ=0.2 
 
It is well-known [Arnold V I, Afrajmovich V S, 
Il’yashenko Yu S and Shil’nikov L P (1994); 
J. Guckenheimer, M. Wechselberger and Lai-
Sang Young (2006); Guckenheimer J., Hoffman, 
K and Weckesser, W. (2005)] that such structure 
of the SIM may give rise to relaxation-type 
oscillations of the system. Still, such motion is 
possible only if the system can reach the fold 
lines while moving on the SIM with respect to 
the slow time scale.  In order to assess this 
possibility, one should investigate the behavior 

of Φ(τ1). For this sake, we consider the 1ε  term 
of multiple – scale expansion namely the second 
equation of (7). We are interested in the behavior 
of the solution on the stable branches of the SIM 

),(lim)( 1021
0

ττϕτ
τ +∞→

=Φ  . Taking the limit 

∞→0τ  in the second equation of System (7) 

and taking into account the asymptotic stability 
of the points of the stable branches with respect 
to time scale τ0, one obtains: 

2 2

1 1

2

2 2 2
1 (1

4 4 4

i ii G

i iG

λ
τ τ

σ σ λ σ

∂Φ ∂Φ⎡ ⎤− + Φ − Φ =⎢ ⎥ ∂ ∂⎣ ⎦
− −⎡ ⎤)

4
A

= − Φ Φ− + Φ +⎢ ⎥⎣ ⎦

    (13)                                    

 3



By taking complex conjugate of (13), it 

is possible to extract the derivative 
1τ
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Figure 3. Phase portrait of the slow invariant 
manifold 
 
3 Relaxation oscillations described by one – 
dimensional mapping 
 

Observing the phase portrait presented 
at Fig. 3 we can see that there is an interval of θ  

- [ 1 2θΘ < < Θ ] for which all the phase 

trajectories are repelled from the lower fold  

(

1N

1NΦ = ).  In the regime of the relaxation 

oscillations, the phase trajectory jumps from a 
point of this interval to the upper branch of the 
SIM, then it moves along the line of the slow 
flow to the upper fold line, then jumps back to 
the lower branch and moves to the lower fold 
line, commencing in one of the points of the 

interval  in order to enable the next 

jump. Therefore it is natural to consider this 

regime as mapping of the interval  into 

itself – the regime of the relaxation oscillations 
will correspond to attractor of this one – 
dimensional map. Existence of this attractor is 
therefore necessary and sufficient condition for 
existence of the SMR for system (4), or, 

equivalently, equation (5), when the mass ratio ε 
is small enough.  

1 2[ , ]Θ Θ

1 2[ , ]Θ Θ

In order to build the relevant mapping, we 
should consider separately the "slow" and the 
"fast" parts of the mapping cycle. As for the 
"slow" parts on the lower and the upper branches 
of the SIM, we can use equations (14) and 
directly connect the "entrance" and "exit" points. 
Due to complexity of the equations, this part of 
the mapping should be accomplished 
numerically. As for the "fast" parts, the function 
φ2 should be continuous at the points of contact 
between the "fast" and the "slow" parts. 
Therefore, for "fast" parts of the motion one 
obtains complex invariant C(τ1), defined by 
Equation (9). If one knows its value at the point 
of "start", it is possible co compute N and θ for 
the point of "finish" unambiguously and thus to 
complete the mapping. The procedure of 
numerical integration should be performed twice 
– for two branches of the SIM. Two invariants 
should be computed for two "fast" jumps, in 
order to determine their final points. 

Not every trajectory which starts from 
the lower fold of the SIM will reach the initial 
interval since it may be attracted to alternative 
attractor at the upper or the lower branch of the 
SIM, if it exists. Of course, only those points 
which are mapped into the interval can carry 
sustained relaxation oscillations. The mapping 
procedure is illustrated at Figs. 4-5 

 
Figure 4 One dimensional mapping; 

1, 0.6, 0.2Aσ λ= = = . 
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Figure 5 One dimensional mapping; 

2.9, 0.6, 0.2Aσ λ= = = . 
.        The mapping at Fig. 4 exists for all 
points of the interval and is obviously 
contractive, therefore one can expect existence of 
stable attractor corresponding to the regime of 
the relaxation oscillations (or SMR). By 
increasing the detuning parameter value (Fig. 5) 
one can notice that the mapping lines tend to the 
right and there is also a region on the basin 
which doesn’t contain any lines. This region 
relates to the unaccomplished cycles, namely to 
the phase trajectories which started from the 
region and have been attracted to the periodic 
response attractor before they have reached the 
basin one more time. The mentioned trajectories 
are not illustrated on the diagram. It is clear from 
Fig. 6 that there is no stable attractor of the SMR 
and for every initial condition on the basin the 
system finally (after sufficient number of cycles) 
leaves the basin.  

By now we can conclude that for some 
increased values of detuning parameter the SMR 
attractor vanishes.  
Running with the values of detuning (σ ) and for 
each step performing the mapping one can track 
the value of σ  for which the attractor vanishes. 
This provides a general tool for determination of 
the frequency region for the existence of strongly 
modulated response.  For current system, the 
boundaries of the detuning parameter within 
which the SMR exists 

are 2.69 2.0546;R Lσ σ σ= > > = − . So, as 

it was established earlier by direct numerical 
simulation, the SMR exists in rather small 
vicinity of the exact 1:1 resonance. 

Our next goal is to investigate the mechanism of 
"birth" of the limit cycle related to the SMR 
when the detuning parameter passes its critical 
value. At Fig. 6 a sequence of mapping diagrams 
close to upper critical value of the detuning 

parameter ( Rσ σ= )  is presented. 

 
Figure 6 Sequence of mapping diagrams in the 

region ( 11 θ< < Θ ); Horizontal bold lines refer 

to the basin of jump. Stable cycle marked with 
bold blue solid line and unstable is marked with 
the bold red solid line 
  For the boundary value 

( 2.69Rσ σ= = ) we can see undistinguishable 

stable and unstable cycles, separating while the  
detuning parameter is decreased.  This scenario 
corresponds to simple fold bifurcation of 1D 
map – creation of stable and unstable fixed 
points. It is essential also to check what happens 

about the left boundary ( Lσ ). In order to 

understand the mechanism by which the loss of 
the stable cycle occurs we have zoomed the area 
near the left end of the basin and plotted the 
diagrams for gradually decreasing values of σ  

near the left boundary ( Lσ ) (Fig. 7).  
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Figure 7 One dimensional mapping diagrams for 
( 2.0511, 2.052)σ σ= − = − . The bold red 
lines refer to the unstable double period cycle. 
The bold blue line refers to the stable one period 
cycle. 
 
As one can see from the diagrams of Fig. 8 that 
for some value of detuning parameter we obtain 
the creation of the unstable double period cycle 
right on the left end of the basin. Slightly 
decreasing the detuning parameter value we can 
see the movement of the double period cycle 
from the left end of the basin inside the interior 
region.  

The behavior of the SMR is described 
by 1D nonlinear map. Consequently, generic 
bifurcations of the 1D maps are expected to be 
observed also for these limit cycles in 4D state 
space. One of such generic bifurcations is period 
doubling, which exists for certain values of 
parameters.  For example, picking a set of 
system parameters 1, 0.05, 0A λ σ= = =  one 
obtains the double period cycle of the one 
dimensional mapping (Fig. 11).   

 

 

 
. 
 
 

t 
 
 

this paper, we restrict 
urselves by comparison of the analytic 

with numerical 
mulatio

mapping is 
com

 Figure 9 Blue arrowed lines refer to analytic 
predictions, green arrowed lines refer to numeric 
solution of averaged system (4)

Figure 8 Double period cycle of the one
dimensional mapping. 

Additional period doubling bifurcations (e.g
from double period to for period cycle) were not
observed in the mappings, however the period
doublings are rater ubiquitous 
 It should be mentioned that the analytic 
approach developed above is valid in the limi
ε→0. The approximation for finite values of ε
requires computation of the higher – order
expansions for equation (7) and is rather 
cumbersome task. In 
o
predictions with numeric simulations of original 
system (1) and averaged system (4). 

Obtained analytical prediction of the SMR 
existence is in agreement 
si n.   

 
4 Numeric simulations and verification of the 
analytic approach 

Our next goal is to verify numerically 
an analytical prediction of the SMR attractor 
existence described in the previous section. At 
Fig. 9 the analytic prediction obtained with the 
help of the one – dimensional 

pared to the numeric solutions of averaged 
system (4) for various initial conditions. 
 

0.001 ,  =0ε σ=  
 

Then, we compare the numeric solution of 
the original system (1) with initial conditions 
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constrained to the SIM (with the same 
parameters as used for the plot of Fig. 4), with 
the analytic predictions. 

 
Figure 10 Time series for the SMR response 
 

The frequency detuning interval obtained for 
the analytically predicted existence of the SMR 
attractor is [-0.9,1] when numerical simulation 
provides for 0.01ε =  - [-0.9, 0.9]. It is 
essential to note that the accuracy of the 
analytical prediction is increased with an epsilon 
reduction. 
 
5 Concluding Remarks   

The results presented in the above sections 
demonstrate that the SMR may be rather 
ubiquitous in the forced systems with essential 
nonlinearity and strong mass asymmetry. This 
type of response exists in a vicinity of exact 1:1 
resonance and is characterized by relaxation 

variant manifold. Singular asymptotic 
proc

subset of

 of the SMR. Other generic 
ifurcations of 1D maps, like period doubling, 
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