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Abstract: Survey of the application of PLL in computer architectures and microprocessors is given. Design of PLL
in terms of phase relations is considered. Generalization of Viterbi theorem on the form of phase detector
characteristic is made.

1 INTRODUCTION

Phase-locked loops (PLLs) are frequently
encountered in radio engineering and communication.
Phase-locked loops (PLLs) are frequently
encountered in radio engineering and communication.
Once they had been invented in the 1930s-1940s (De
Bellescize, 1932; Wendt, Fredentall, 1943), intensive
studies of the theory and practice of PLLs were
carried out (Viterbi, 1966; Gardner, 1966; Lindsey,
1972; Lindsey and Chie, 1981; Leonov, Reitmann
and Smirnova, 1992; Leonov, Ponomarenko and
Smirnova, 1996; Leonov and Smirnova, 2000;
Kroupa, 1973; Kroupa, 2003; Best, 2003, Razavi,
2003; Razavi, 2001; Egan, 2000; Egan, 1998;
Abramovitch, 2002).

One of the first applications of phase-locked loop
(PLL) is related to the problems of a data transfer
by means of a radio signal. In the radio engineering
the PLL is applied for a carrier synchronization,
carrier recovery, demodulation, frequency division
and multiplication.

With the occurrence of the architecture with the
chips, operating on different frequencies, the phase-
locked loop systems are applied to the generation of
the internal frequencies of chips and the generation
of frequencies and synchronization of the operating
of different devices and a data buses. For example,
the modern motherboards of computers contain
different devices and data buses operating on different
frequencies and often requiring synchronization.

Figure 1: David Greaves. Lecture course. Structured
Hardware Design

The actual problem for processors is the problem
of energy saving. One of solutions of this problem
in practice is a decreasing of kernel frequency with
processor load. For example, for the processors of
company VIA C7/C7-M it is known that in them the
technology VIA TwinTurbo is realized which makes
it possible that the processor changes over from
the full-load conditions to a power-down mode in a
processor tact due to the two blocks of phase-locked
loops in processor. Les us consider the applying of
a phase-locked loop system for the kernels control in
the processors with multiple kernels on the example
of the processors of company AMD K8L such that
the separate PLL-generators provide the independent
clock frequency for kernels. The independent phase-
locked loops permit us to distribute more uniformly
kernel loading to save the energy and to diminish



Figure 2: AMD K8L

a heat generation on account of that each kernel
operates on its frequency. For comparison, many
two-kernel processors, including Intel Core 2 Duo,
maximize a frequency of both kernels even if really it
is loaded one kernel only. In the processors of Intel
Kentsfield are used two phase-locked loops for the
four kernels: two kernels can operate on a maximal
frequency while two another processors can be rest.

Subsequently the phase-locked loop systems gain
sufficiently wide application for the solution of the
problems of a clock skew and a synchronization and
generation of frequencies for the sets of the chips
of computer architectures and micro architectures of
chips. For example, clock skew is very important
characteristic of processors (see, for example:
[Xanthopoulos, 2001; Bindal, 2003]).

In the microprocessors there are often used the
symmetrically distributed in the form of H-trees
phase-locked loop systems (see, for example, [Martin
Saint-Laurent et al., 2001]).

Figure 3: Distributed PLL

In the last ten years, PLLs have widely been
used in array processors and other devices of digital
information processing (Ugrumov, 2000; Lapsley
et al., 1997; Smith, 1999; Solonina et al., 2000;

Leonov and Seledzhi, 2002; DSP 56000 (DSP 56 K
FAMUM/AD), 1992; Simpson, 1994). For examples,
there are such PLLs in the processors DSP 56000
and DSP 56 K (Motorola) (DSP 56000 (DSP 56
K FAMUM/AD), 1992; Simpson, 1994). The
PLLs showed their high efficiency as synthesizers of
clock rates and as devices correcting a clock skew
(Ugrumov, 2000; Lapsley et al., 1997; Smith, 1999;
Solonina et al., 2000; Leonov and Seledzhi, 2002;
Simpson, 1994). These properties of PLLs determine
their specific features and their difference from the
standard PLLs used in radio engineering.

The main requirement to PLLs for array
processors is that they must be floating in phase. This
means that the system must eliminate the clock skew
completely. The elimination of the clock skew is one
of the most important problems in parallel computing
and information processing (as well as in the design
of array processors (Kung, 1988).Several approaches
to solving the problem of eliminating the clock skew
have been devised for the last thirty years.

In developing the design of multiprocessor
systems, a way was suggested (Kung, 1988) for
joining the processors in the form of an H-tree,
in which (Fig. 3,4) the lengths of the paths
from the clock to every processor are the same.
However, in this case the clock skew is not eliminated

Figure 4: H-tree

completely because of heterogeneity of the wires
(Kung, 1988). Moreover, for a great number
of processors, the configuration of communication
wires is very complicated. This leads to difficult
technological problems.

Solving the clock skew problem at a hard-
and software level has resulted in the invention of
asynchronous communication protocols, which can
correct the asynchronism of operations by waiting
modes . In other words, the creation of this
protocols enables one not to distort the final results by
delaying information at some stages of the execution
of a parallel algorithm. As an advantage of this
approach, we may mention the fact that we need
not develop a special complicated hardware support
system. Among the disadvantages we note the
deceleration of performance of parallel algorithms. In
addition to the problem of eliminating the clock skew,



one more important problem arose. The increase in
the number of processors in multiprocessor systems
required an increase in the power of the clock.
But the powerful clock came to produce significant
electromagnetic noise. About ten years ago, a new
method for eliminating the clock skew and reducing
the generator’s power was suggested. It consists of
introducing a special distributed system of clocks
controlled by PLLs. An advantage of this method,
in comparison with asynchronous communication
protocols, is the lack of special delays in the
performance of parallel algorithms. This approach
enables one to reduce significantly the power of
clocks. Consider the general scheme of a distributed
system of oscillators (Fig. 5)

Figure 5: Distributed system of clocks controlled by PLLs
In this paper new type of floating PLL for

processors Pk working in parallel is designed.

2 BLOCK DIAGRAM AND
MATHEMATICAL MODEL OF
PLL

A classical approach to the design of PLL is
preliminary consideration of the two signalsf1(t) and
f2(t), passing through multiplier and filter with the
transfer functionK(p) and pulse transient function
γ(t) (Fig. 6). It is often considered filter with the
transfer function

K(p) =
β

p+ α
. (1)

Hereα andβ are positive constants,g(t) is the output
of filter.

Consider further the two type of signalf1(t) and
f2(t):

f j(t) = A j sin(ω j(t)t + ψ j) (2)
f j(t) = A jsign(sin(ω j(t)t + ψ j)) (3)

Here A j ,ψ j are some numbers, ω j(t) are
differentiable functions, satisfying the following
condition.

For any numberτ ≥ 0 and any positive small
numberδ the following inequalities

|γ(t)− γ(τ)| ¿ 1, |ω j(t)−ω j(τ)| ¿ 1,
∀t ∈ [τ,τ + δ] (4)

(ω1(τ)−ω2(τ))δ¿ 1, ω j(τ)δÀ 1, (5)

where j = 1,2, are satisfied.
Conditions (4) and (5) means that on the small

intervals [τ,τ + δ] the functionsω j(t) and γ(t) are
”almost constants”, and the functionsf j(t) are fast
oscillating.

The oscillations of the type (2) under the
conditions (4) and (5) turn out to be near the harmonic
ones and are representative for many radiotechnology
generators (Viterbi, 1966; Lindsey, 1972). The
oscillations of the type (3) are representative for the
pulse sequences of clock (Ugrumov, 2000; Lapsley et
al., 1997; Smith, 1999; Solonina et al., 2000; Leonov
and Seledzhi, 2002), centered with respect to zero
voltage.

Now we introduce the functionsθ j(t) = ω j(t)t +
ψ j , under conditions (4) and (5), which we shall call
the phases of oscillationsf j(t).

Consider a block diagram in Fig. 7.
Here PD is a nonlinear block with the

characteristicϕ(θ), which is called a phase detector.
At the inputs of a block of PD there are the phases
θ j(t), the output is the functionϕ(θ1(t) − θ2(t)).
Then the signalϕ(θ1(t)− θ2(t)) acts on the filter
with the transfer functionK(p). The functionG(t) is
an output of filter.

The classical design of PLL is based on the
following well-known result (Viterbi, 1966; Lindsey,
1972).

Theorem 1 If conditions (2), (4), and (5) are valid
and ϕ(θ) = 1

2A1A2cosθ, then for the same initial
states of filter we have

|g(t)−G(t)| ¿ 1, ∀t ≥ 0, tδ¿ 1. (6)

Consider now2π-periodic functionϕ(θ) of the
form

ϕ(θ) =





A1A2(1+2θ/π) for θ ∈ [−π,0]

A1A2(1−2θ/π) for θ ∈ [0,π].
(7)

Theorem 2 If the functionsf j(t) have the form (3),
the functionϕ(θ) the form (7) and conditions (4), (5)
are valid, then for the same initial states of filter we
have inequality (6).

Remark that the block diagram in Fig. 6 can
be realized by using standard electronic elements,
namely multipliers and filters (Aleksenko, 2004). The
block diagram in Fig. 4 is asymptotically (in the sense
of relation (6)) equivalent to the block diagram in Fig.
3.

Introducing the equivalent block diagram (Fig. 7)
we can consider the control problem in the context
of synchronization theory (Lindsey, 1972; Leonov



Figure 6: Multiplier and filter

Figure 7: Phase detector and filter

and Seledzhi, 2002), a universal principle of which
is a transformation of the difference of phases of two
oscillations into the control action on the frequency of
slave oscillator.

On the other hand, the block diagram (Fig. 6)
is electronic realization of this general principle of
synchronization theory.

Using Theorem 2, we can do the design of the
block diagram of floating PLL, which plays a role of
the function of frequency synthesizer and the function
of correction of the clock-skew.

Such a block diagram is shown in Fig. 8.
Here C is a master ocillator,D is a delay, IF

is a filter with transfer function (1),SO is a slave
oscillator, PD1 and PD2 are programmable dividers
of frequencies,P is a processor.

The relay elementR plays a role of floating
correcting block. The introducing of it allow us to null
a residual clock skew, which arises for the nonnull
initial difference of frequencies of master and slave
oscillators.

Note, the electronic realization of clock and
delay can be found in (Ugrumov, 2000) and that of
multipliers, filters, and relays in (Aleksenko, 2004).
The description of dividers of frequency can be found
in (Solonina et al., 2000).

Assume, as usual, that the frequency of master
oscillator is constant, namelyω1(t) ≡ ω1 = const.
The parameter of delay lineT is chosen in such a
way thatω1(T + τ) = 2πk+3π/2. Herek is a certain
natural number,ω1τ is a clock skew.

By Theorem 2 and the choice ofT the block
diagram, shown in Fig. 8, can be changed by the close
(in the sense of condition (6)) block diagram, shown

Figure 8: Block diagram of PLL

in Fig. 9.
Here 2π is a periodic characteristic of phase

detector. It has the form

ϕ(θ) =





2A1A2θ/π for θ ∈ [−π
2 ,

π
2 ]

2A1A2(1−θ/π) for θ ∈ [ π
2 ,

3π
2 ],

(8)
θ2(t) = θ3(t)/M, θ4(t) = θ3(t)/N, where the
natural numbersM and N are the parameters of
programmable divisions PD1 and PD2.

Figure 9: Equivalent block diagram of PLL

For transient process (capture mode) the following
conditions

lim
t→+∞

(θ4(t)− M
N

θ1(t)) =
2πkM

N
(9)

(phase capture)

lim
t→+∞

(θ̇4(t)− M
N

θ̇1(t)) = 0 (10)

( frequency capture) must be satisfied.
Relations (9) and (10) are the main requirements

of PLL for array processors. Time of transient
processors depend on initial data and be sufficiently
large for multiprocessors system (see Fig. 2) (Leonov
and Seledzhi, 2002; Kung, 1988). Here difference
between beginning of transient process and beginning
of performance of parallel algorithm (see Fig. 5) can



be some minutes. This difference is very large for
electronic systems.

Assuming that the characteristic of relay is of the
form Ψ(G) = signG and the actuating element of
slave oscillator is linear, we have

θ̇3(t) = RsignG(t)+ ω3(0), (11)
where R is a certain number,ω3(0) is initial
frequency,θ3(t) is a phase of slave oscillator.

Taking into account relations (11), (1), (8), and
the block diagram in Fig. 9, we have the following
differential equations of PLL

Ġ+ αG = βϕ(θ)

θ̇ =− R
M signG+(ω1− ω3(0)

M ).
(12)

Hereθ(t) = θ1(t)−θ2(t).

3 CRITERION OF GLOBAL
STABILITY OF PLL

System (12) can be written as

Ġ =−αG+ βϕ(θ)

θ̇ =−F(G),
(13)

where

F(G) =
R
M

signG− (ω1− ω3(0)
M

).

Theorem 3 If the inequality

|R|> |Mω1−ω3(0)| (14)
is valid, then any solution of system (13) ast → +∞
tends to a certain state of equilibrium.

If the inequality holds

|R|< |Mω1−ω3(0)|, (15)
then all the solutions of system (13) tends to infinity
ast→+∞.

Consider the states of equilibrium for system (13).
For any equilibrium we have

θ̇(t)≡ 0, G(t)≡ 0, θ(t)≡ πk.

Theorem 4 Let relation (14) be valid. In this case, if
R> 0, then the following equilibria

G(t)≡ 0, θ(t)≡ 2kπ (16)
are locally asymptotically stable and the following
equilibria

G(t)≡ 0, θ(t)≡ (2k+1)π (17)
are locally unstable. IfR< 0, then equilibria (17) are
locally asymptotically stable and equilibria (16) are
locally unstable.

Thus, for relations (9) and (10) to be satisfied it is
necessary to choice the parameters of system in such
a way that the inequality holds

R> |Mω1−ω3(0)|. (18)

4 PROOFS OF THEOREMS

Proof Theorem 2.It is well know that, for a filter
with an impulse transition functionγ(t), input ε(t),
outputσ(t), and eigenoscillationα(t), the following
relation holds:

σ(t) = α(t)+
tZ

0

γ(t−s)ξ(s)ds.

Therefore, the formula

g(t)−G(t) =
tR

0
γ(t−s)[A1A2sign[sin(ω1(s)s+

+ψ1)sin(ω2(s)s+ ψ2)]−
−ϕ(ω1(s)s−ω2(s)s+ ψ1−ψ2)]ds

is valid.
Partitioning the interval [0, t] into intervals

[kδ,(k+ 1)δ] and using assumptions (4) and (5), we
replase the above integral with the following sum:

m
∑

k=0
γ(t−kδ)[

(k+1)δR
kδ

A1A2sign[cos((ω1(kδ)−
ω2(kδ))kδ + ψ1−ψ2)−cos((ω1(kδ)+
+ω2(kδ))s+ ψ1 + ψ2)]ds−ϕ((ω1(kδ)−
−ω2(kδ))kδ + ψ1−ψ2)δ].

The numberm is chosen in such a way thatt ∈
[mδ,(m+ 1)δ]. Since(ω1(kδ) + ω2(kδ))δ À 1 the
relation

(k+1)δZ
kδ

A1A2sign[cos((ω1(kδ)−ω2(kδ))kδ+ψ1−ψ2)−

−cos((ω1(kδ)+ ω2(kδ))s+ ψ1 + ψ2)]ds≈
≈ ϕ((ω1(kδ)−ω2(kδ))kδ + ψ1−ψ2)δ, (19)

holds. Here, we used the relation

A1A2

(k+1)δZ
kδ

sign[cosα−cos(ωs+ ψ0)]ds≈ ϕ(α)δ

for ωδÀ 1, α ∈ [−π,π], ψ0 ∈ R1.
Formula (19) implies inequality (6).
To prove Theorem 3, we formulate an extension

of the Barbashin–Krasovskii theorem to dynamical



systems with a cylindrical phase space. Consider the
differential inclusion

dx
dt
∈ f (x), x∈ Rn, t ∈ R1, (20)

where f (x) is a semicontinuous vector function
whose values are bounded closed convex setsf (x) ⊂
Rn. Here, Rn is an n-dimensional Euclidean
space. Recall the basic definitions of the theory of
differential inclusions.

Definition 1 We say thatUε(Ω) is anε-neighborhood
of setΩ if

Uε(Ω) = {x| inf
y∈Ω
|x−y|< ε}

where| · | is the Euclidean norm inRn.

Definition 2 A function f (x) is called
semicontinuous at a pointx if, for any ε > 0,
there exists a numberδ(x,ε) > 0 such that the
following containment holds:

f (y) ∈Uε( f (x)), ∀y∈Uδ(x).

Definition 3 A vector function x(t) is called a
solution of the differential inclusion if it is absolutely
continuous and, for the values oft at which the
derivativeẋ(t) exists, the inclusion

ẋ(t) ∈ f (x(t))

holds.

Under the above assumptions on the functionf (x),
the theorem on the existence and continuability
of solution of the differential inclusion (20) holds
(Yakubovich et al., 2004). Now, assume that linearly
independent vectorsd1, . . . ,dm satisfy the following
relations:

f (x+d j) = f (x), ∀x∈ Rn. (21)

Usually, d∗j x is called the phase or angular
coordinate of system (20). Since property (21)
allows us to introduce the cylindrical phase space
(Yakubovich et al., 2004), system (20) with property
(21) is often called a system with cylindrical phase
space.

The following theorem is an extension of
the well–known Barbashin–Krasovskii theorem to
differential inclusions with a cylindrical phase space.

Theorem 5 Suppose that there exists a continuous
function V(x) : Rn → R1 such that the following
conditions hold:

1) V(x+d j) = V(x), ∀x∈ Rn, ∀ j = 1, . . . ,m;

2) V(x)+
m
∑
j=1

(d∗j x)2→ ∞ as|x| → ∞;

3) for any solutionx(t) of inclusion (20) the
functionV(x(t)) is nonincreasing;

4) if V(x(t))≡V(x(0)), thenx(t) is an equilibrium
state.

Then, any solution to inclusion (20) tends to the
stationary set ast→+∞.

Recall that the tendency of the solution to the
stationary setΛ ast means that

lim
t→+∞

inf
z∈Λ
|z−x(t)|= 0.

A proof of Theorem 5 can be found in
(Yakubovich et al., 2004).

Proofs Theorems 3 and 4.Let R> |Mω1−ω2(0)|.
Consider the Lyapunov function

V(G,θ) =
GZ

0

Φ(u)du+ β
θZ

0

ϕ(u)du,

where Φ(G) is a single-valued function coinciding
with F(G) for G 6= 0. At G = 0,function Φ(G) can
be defined arbitrary. At pointst such thatG(t) 6= 0,
we have

dV(G(t),θ(t))
dt

=−αG(t)F(G(t)). (22)

Note that, forG(t) = 0, the first equation of system
(12) implies

Ġ(t) 6= 0 for θ(t) 6= kπ.

This implies that there are no sliding solutions of
system (12). Then, relation (22) and the inequality
F(G)G> 0, ∀G 6= 0, imply that conditions (3) and (4)
of Theorem 5 are satisfied. Moreover,V(G,θ+2π)≡
V(G,θ) andV(G,θ)→ +∞ asG→ +∞. Therefore
, conditions (1) and (2) of Theorem 5 are satisfied.
Hence, any solution of system (12) tends to the
stationary set ast → +∞. Since the stationary set of
system (12) consists of isolated points, any solution to
system (12) tends to are equilibrium state ast→+∞.

If the inequality

−R> |Mω1−ω3(0)|, (23)

is valid, then, instead of the functionV(G,θ), one
should consider the Lyapunov functionW(G,θ) =
−V(G,θ) and repeat the above considerations.

Under inequality (15), we have the relation
F(G) 6= 0, ∀G ∈ R1. Together with the second
equation of system (12), this implies that

lim
t→+∞

θ(t) = ∞.

Thus, Theorem 3 is completely proved.
To prove Theorem 4, one should note thus, if

condition (18) holds in a neighborhood of pointsG =
0, θ = 2πk, then the functionV(G,θ) has the property

V(G,θ)> 0 for |G|+ |θ−2kπ| 6= 0.



Together with equality (22), this implies the
asymptotic stability of these equilibrium states.

In a neighborhood of pointsG= 0, θ = (2k+1)πk,
the functionV(G,θ) has the property

V(0,θ)< 0 for θ 6= (2k+1)π.

Together with equality (22), this implies the
instability of these equilibrium states.

If inequality (23) holds, then, instead of the
function V(G,θ), one should consider the function
W(G,θ) =−V(G,θ) and repeat the considerations.

5 CONCLUSIONS

Here the classical A.J.Viterbi ideas (Viterbi, 1966)
are developed and generalized for design of PLL
with pulse modulation. Introduction of relay element
in the block diagram after filter is essentialy new
construction for floating PLL with respect to previous
design of floating PLL for radio engineering (Viterbi,
1966). In this paper is showed that main requirements
to PLL for multiprocessors systems is global stability.
Necessary and sufficient conditions of global stability
for floating PLL are obtained. For proof of this results
direct Lyapunov method is developed.
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