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Abstract
In the present paper analysis and simulation are per-

formed for the simplest model of a skateboard. We sup-
pose the skateboard is uncontrollable. The equations of
motion of the model are derived and their stability anal-
ysis is fulfilled.
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1 Introduction
Nowadays skateboarding that is rider’s skill, has be-

come one of the most popular kind of sport. Neverthe-
less serious researches concerning dynamics and stabil-
ity of a skateboard are almost absent. At the late 70th -
early 80th of the last century Mont Hubbard [1; 2] pro-
posed the two mathematical models describing motions
of a skateboard in the presence of a rider. To derive the
equations of motion he used the principal theorems of
dynamics. In our paper we give the further develop-
ment of the models proposed by Hubbard.

Figure 1. The skateboard.

A skateboard typically consists of a board, two trucks
and four wheels (Fig. 1). The modern boards are usu-
ally from 78 to 83 cm long, 17 to 21 cm wide and 1 to
2 cm thick. The most essential elements of the skate-
board are the trucks, connecting the axles to the board.
Angular motion of both the front and rear axles is con-
strained to be about their respective nonhorizontal pivot
axes, thus causing a steering angle of the wheels when-
ever the axles are not parallel to the plane of the board

(Fig. 1-2). The vehicle is steered by making use of this
kinematic relationship between steering angles and tilt
of the board. In addition, there is a torsional spring,
which exerts the restoring torque between the wheelset
and the board proportional to the tilt of the board with
respect to the wheelset (Fig. 3). We denote the stiffness
of this spring byk1.

Figure 2. Figure 3.

2 Formulation of the Problem. Equations of Mo-
tion

We assume that a rider is modeled with a rigid bar that
is perpendicular relative to the board. Therefore, when
the board tilts through
, the rider tilts through the same
angle relative to the vertical. Let us introduce an iner-
tial coordinate systemOXY Z in the ground plane. LetFR = a be the distance between the two axle centersF andR of the skateboard. The position of the lineFR
with respect to theOXY Z-system is defined byX andY coordinates of its centre and by the angle� between
this line and theOX-axis (Fig. 4).

The tilt of the board is accompanied by rotation of the
front wheels clockwise throughÆf and rotation of the
rear wheels anticlockwise throughÆr (Fig. 2, 4). The
wheels of the skateboard are assumed to roll without
lateral sliding. This condition is modeled by the con-



Figure 4. The basic coordinate systems.

straints which are nonholonomic as can be proved_Y 
os (��Æf )� _X sin (��Æf )+ a2 _� 
os Æf =0;_Y 
os (�+Ær)� _X sin (�+Ær)� a2 _� 
os Ær=0: (1)

Under these conditions velocities of the pointsF andR will be directed horizontally and perpendicularly to
the axles of the wheels and there is the pointP on the
line FR which has zero lateral velocity. We denote
its forward velocity byu. It may be shown, that (see
e.g. [1]-[6]) u = �a _� 
os Æf 
os Ærsin (Æf + Ær) ;
FP = a sin Æf 
os Ærsin (Æf + Ær) ; _� = �u sin (Æf + Ær)a 
os Æf 
os Ær : (2)

Using the results obtained in [5; 6] we conclude that
the steering anglesÆf andÆr are related to the tilt of the
board by the following equationstan Æf = tan�f sin 
; tan Æf = tan�f sin 
; (3)

where�f and�r are the fixed angles which the front
and rear axes make with the horizontal (Fig. 1). Using
constraints (3) we can rewrite equations (1) as follows:_X=u 
os � + (tan�f � tan�r)2 u sin 
 sin �;_Y =u sin � � (tan�f � tan�r)2 u sin 
 
os �: (4)

Expressions (2) becomeFP = a tan�ftan�f+tan�r ; _�=� (tan�f+tan�r)a u sin 
:
(5)

Suppose that the board of the skateboard is located a
distanceh above the lineFR. The length of the board
is also equal toa. The board center of mass is located
in its center. As to the rider we suppose that rider’s
center of mass is not located above the board center
of mass, but it is located over the central line of the
board a distanced from the front truck. Letl be the
height of the rider’s center of mass above the pointP .
Other parameters for the problem are:mb is mass of
the board;mr is mass of the rider;Ibx, Iby , Ibz are the
principal central moments of inertia of the board;Irx,Iry, Irz are the principal central moments of inertia of
the rider. We introduce also the following parameters:Ix = Ibx + Irx; Iy = Iby + Iry; Iz = Ibz + Irz:
It can be proved (see [5]) that the variablesu and


satisfy the following differential equations�A+ (C � 2D) sin2 
 +K sin4 
� _u++ �C � 3D + 3K sin2 
�u _
 sin 
 
os 
++B ��
 
os 
 � _
2 sin 
� sin 
 = 0;E�
 + �D �K sin2 
�u2 sin 
 
os 
++k1
 � (mbh+mrl) g sin 
++B ( _u sin 
 + u _
 
os 
) 
os 
 = 0:
(6)

HereA, : : :, E, K – are the functions of the parame-
ters, namelyA = mb +mr; E = Ix +mbh2 +mrl2;B = mbh2 (tan�f � tan�r)++mrla ((a� d) tan�f � d tan�r) ;C = mb4 (tan�f � tan�r)2+ Iza2 (tan�f+tan�r)2+mra2 ((a� d) tan�f � d tan�r)2 ;D = (tan�f + tan�r)a (mbh+mrl) ;K= (tan�f + tan�r)2a2 �Iy +mbh2 +mrl2 � Iz� :
Thus, equations (4)-(6) form the close system of equa-

tion of the skateboard motion.



3 Stability of the Straight-line motion of the Skate-
board

Equations(6) have the particular solutionu = u0 = 
onst; 
 = 0; (7)

which corresponds to uniform straight-line motion of
the skateboard. The conditions of stability for this par-
ticular solution have the following form [1]-[6]:Bu0 > 0; Du20 + k1 � (mbh+mrl) g > 0 (8)

From the first condition(8) we can conclude that the
stability of motion(7) depends on its direction. If the
motion in one direction is stable then the motion in the
opposite direction is necessary unstable. Such behav-
ior is peculiar to many nonholonomic systems. First of
all, we can mention here the classical problem of mo-
tion of a rattleback (aka wobblestone or celtic stone, see
e.g. [7]-[9]). In this problem the stability of permanent
rotations of a rattleback also depends on the direction
of rotation.
Suppose that the coefficientB is positive,B > 0.

Then foru0 > 0 the skateboard moves in the ”stable”
direction, and foru0 < 0 it moves in the ”unstable”
direction. Whenu0 = 0 the skateboard is in equilib-
rium position on the plane. The necessary and suffi-
cient condition for the stability of this equilibrium have
the form [1]-[6]:k1 � (mbh+mrl) g > 0: (9)

Assuming that condition(9) holds, let us consider the
behaviour of the system near the equilibrium position.
Solving equations(6) with respect to_u and�
 and as-
suming thatu, 
 and _
 are small, we can write the equa-
tions of the perturbed motion taking into account the
terms which are quadratic inu, 
 and _
:_u = B
2A 
2; �
 +
2
 = �Bu _
E ; (10)

where we introduce the following notation
2 = k1 � (mbh+mrl) gE :
Note, that the linear terms in the second equation of

the system(10) have the form which corresponds to
normal oscillations. To examine the nonlinear system
(10) we reduce it to normal form [10]. To obtain the
normal form of the system(10) first of all we replace
the variables with the two complex-conjugate variablesz1 andz2:
 = z1 � z22i ; _
 = z1 + z22 
; u = z3:

In the variableszk, k = 1; 2; 3 the linear part of the
system(10) has the diagonal form and the derivation
of its normal form reduces to separating of resonant
terms from the nonlinearities in the right-hand sides of
the transformed system(10). Finally, the normal form
of the system(10) may be written as follows:_z1 = i
z1 � B2E z1z3; _z2 = �i
z2 � B2Ez2z3;_z3 = B
22A z1z2:
Introducing the real polar coordinates according to the

formulaez1 = �1 (
os� + i sin�) ; z2 = �1 (
os� � i sin�) ;z3 = �2
we obtain from the system(10) the normalized system
of equations of the perturbed motion which is then split
it into two independent subsystems:_�1 = � B2E�1�2; _�2 = B
22A �21; (11)_� = 
: (12)

Terms of order higher than the second in(11) and
those higher than the first in�k, k = 1; 2 in (12) have
been omitted here.
In the"-neighborhood of the equilibrium position the

right-hand sides of equations(11) and(12) differ from
the respective right-hand sides of the exact equations
of the perturbed motion by quantities of order"3 and"2 respectively. The solutions of the exact equations
are approximated by the solutions of system(11)-(12)
with an error of"2 for �1, �2 and of order" for � in the
time interval of order1=". Restricting the calculations
to this accuracy, we will consider the approximate sys-
tem(11)-(12) instead of the complete equations of the
perturbed motion.
The equation(12) is integrable. We obtain� = 
t+ �0:
System(11) describes the evolution of the amplitude�1 of the board oscillations and also the evolution of

the velocity�2 of the straight-line motion of the skate-
board. One can see that this system has the first integralE�21 + A
2 �22 = An21; (13)

wheren1 is the constant, specified by initial conditions.
We will use this integral for solving of the system(11)



and for finding the variables�1 and�2 as functions of
time: �1 = �1 (t), �2 = �2 (t). Expressing�21 from the
integral(13) and substitute it to the second equation of
the system(11) we get_�2 = B2E �
2n21 � �22� : (14)

The general solution of equation(14) has the follow-
ing form:�2 (t) = 
n1 �1� n2 exp ��B
n1E t���1 + n2 exp ��B
n1E t�� ; (15)

wheren2 is a nonnegative arbitrary constant. Now, us-
ing the integral(13), we can find the explicit form of
the function�1 (t):�1 (t) = 2n1rAn2E exp ��B
n12E t�1 + n2 exp ��B
n1E t� : (16)

Let us consider the properties of the solutions(15),(16) of system(11) and their relations with the proper-
ties of motion of the skateboard. System(11) has the
equilibrium position�1 = 0; �2 = 
n1 (17)

(these particular solutions can be obtained from the
general functions(15)-(16) if we suppose in these
functionsn2 = 0). The arbitrary constantn1 can take
any sign. The positive values of this constant corre-
spond to the straight-line motions of the skateboard
with a small velocity in the ”stable” direction and the
negative values correspond to the ”unstable” direction.
Indeed, if we linearize equations(11) near the equilib-
rium position(17) we get_�1 = � B2E
n1�1; _�2 = 0:
Thus, forn1 > 0 the equilibrium position(17) is sta-

ble and forn1 < 0 it is unstable.
Varying the functions�1 and �2 we obtain the be-

haviour of the skateboard moving with small velocities.
Let us suppose, that at the initial instant the system
is near the stable equilibrium position(n1 > 0) and�2 (0) � 0, i.e.n2 � 1 (the case whenn1 > 0, n2 > 1
is similar to the casen1 < 0, n2 < 1, which will be in-
vestigated below). These initial conditions correspond
the situation when at the initial instant the skateboard
takes the small velocity�2 (0) = 
n1 1� n21 + n2

in the ”stable” direction. Then in the course of time the
”amplitude” of oscillations of the board�1 decreases
monotonically from its initial value�1 (0) = 2n11 + n2rAn2E
to zero, while the magnitude of the skateboard velocity�2 increases. In the limit the skateboard moves in the
”stable” direction with the constant velocity
n1 (see
Fig. 5-6).

Figure 5. Evolution of the amplitude�1 of the board oscillations

in time for the casen1 > 0,n2 � 1.

Figure 6. Evolution of the ”velocity”�2 of the skateboard in time

for the casen1 > 0,n2 � 1.

Suppose now that at the initial instant the system is
near the unstable equilibrium positionn1 < 0. Sup-
pose again, that at the initial instantn2 < 1, i.e.�2 (0) < 0 (the casen1 < 0, n2 > 1 is similar to
the casen1 > 0, n2 < 1 which was considered above).
These initial conditions correspond the situation when
at the initial instant the skateboard takes the small ve-
locity �2 (0) = 
n1 1� n21 + n2



in the ”unstable” direction. In this case the limit of the
system motions is the same as when�2 (0) � 0 but the
evolution of the motion is entirely different. When0 < t < t� = E ln (n2)B
n1
the absolute value of the oscillation ”amplitude”�1 in-
creases monotonically and the skateboard moves in the
”unstable” direction with decreasing velocity. At the
instantt = t� the velocity vanishes and the oscillation
”amplitude”�1 reaches its maximum absolute value�1 (t�) = n1rAE :

Figure 7. Evolution of the amplitude�1 of the board oscillations

in time for the casen1 < 0,n2 � 1.

Figure 8. Evolution of the ”velocity”�2 of the skateboard in time

for the casen1 < 0,n2 � 1.

When t > t� the skateboard already moves in the
”stable” direction with increasing magnitude of its ve-
locity and the oscillation amplitude decreases mono-
tonically. Thus when�2 (0) < 0 the skateboard

changes the direction of its motion (Fig. 7-8). The sim-
ilar nonlinear effects (in particular the change of the di-
rection of motion) were observed earlier in other prob-
lems of nonholonomic mechanics (for example in the
classical problem of dynamics of a rattleback [7]-[9]).
Thus, we describe here the basic features of dynamics
of the simplest skateboard model, proposed in [1; 2]
and developed by us.

4 Conclusions
In this paper the problem of motion of the skate-

board with a rider was examined. This problem has
many common features with other problems of non-
holonomic dynamics. In particular it was shown that
the stability of motion of the skateboard depends on the
direction of motion. Moreover the system can change
its direction of motion. The similar effects have been
found earlier in the classical problem of a rattleback
dynamics.
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