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Abstract 

 Adaptive control of a three - tank - system 
laboratory model is presented. The objective 
laboratory model is a two input – two output 
(TITO) nonlinear system with internal interactions 
between input and output variables. It is based on 
experience with authentic industrial control 
applications. Two control algorithms based on 
polynomial theory and pole – placement are 
proposed. Decoupling compensators are used to 
suppress interactions between control loops. The 
algorithms implemented as self – tuning controllers 
are then used for control of the model. Results of 
real-time experiments are also included. 
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1  Introduction 

 Typical technological processes require the 
simultaneous control of several variables related to 
one system. Each input may influence all system 
outputs. The three – tank – system (Fig. 1) is a 
typical multivariable non-linear system with 
significant cross-coupling. The design of a 
controller for such a system must be quite 
sophisticated if the system is to be controlled 
adequately. There are many different advanced 
methods of controlling MIMO (multi input – multi 
output) systems. The problem of selecting an 
appropriate control technique often arises. Several 
of these methods use decentralised controllers. In 
this case, the system is considered as a set of 
interconnected subsystems and the output of each 
subsystem is influenced not only by the input to 
this subsystem, but also by inputs to the other 
subsystems. Each subsystem is controlled by a 
stand-alone controller. Thus, decentralized control 
is based on decomposition of the MIMO system to 
subsystems, and the design of a controller for each 

subsystem [Luyben, 1986; Cui and Jacobsen, 2002; 
Zhang et al., 2000]. The classical approach to the 
control of multi-input–multi-output (MIMO) 
systems is based on the design of a matrix 
controller to control all system outputs at one time 
[Albertos and Sala, 2004]. Computation for the 
matrix controller is realized by a central computer. 
The basic advantage of this approach is its ability 
to achieve optimal control performance because the 
controller can use all the available information 
about the controlled system. Its disadvantage is its 
demands on computer resources, because the 
number of operations and required memory depend 
on the square of the number of controlled signals. 
This increases the price of the control system.  
In this paper two matrix controllers which utilize 
decoupling compensators are presented. A serial 
insertion of a compensator ahead of the system 
[Krishnawamy et al., 1991; Peng, 1990; Tade et al., 
1986; Wittenmark et al., 1987] is a very popular 
way of controlling MIMO processes. The 
objective, in this case, is to suppress undesirable 
interactions between the input and output variables 
so that each input affects only one controlled 
variable.  
The applied controllers are based on polynomial 
methods [Kučera 1980; Kučera 1991] which are a 
standard technique for MIMO control systems. 
Applications of the polynomial methods yield a 
suitable controller type and expressions for 
computation of its parameters. The type of the 
controller depends on the required properties of the 
controlled system. This is valid both for SISO 
systems (with scalar transfer functions for the 
controllers) and for MIMO systems (where the 
transfer functions of the controllers are represented 
by polynomial matrices). Controller synthesis is 
reduced to the solution of linear Diophantine 
equations [Kučera 1993].  
Dynamic behaviour of the system was described in 
the neighbourhood of a steady state by a discrete 



linear model in the form of matrix fraction. It is an 
input – output model (“black box model”) which 
does not take into consideration an internal 
structure of the system. It is a model of the system 
behaviour and its parameters do not have any 
particular physical denotation. 
The model of interconnected tanks is a nonlinear 
system with variable parameters. A suitable 
approach to the control of nonlinear systems is 
application of self – tuning controllers [Landau et 
al., 1998; Bobál et al., 2005]. Then both controllers 
were realized as self – tuning controllers with 
recursive identification of the model of the process. 
The recursive least squares method with the 
directional forgetting was used for the 
identification part. 
This paper is organised as follows: Section 2 
contains description of the three - tank - system; 
Section 3 presents a mathematical model of the 
system which was used for the controllers design; 
Section 4 describes designs of the controllers; 
Section 5 describes the system identification 
method; Section 6 contains the experimental 
results;  Section 7 concludes the paper. 
 
2  Three – tank – system  

 The three – tank – system laboratory model can 
be viewed as a prototype of many industrial 
applications in process industry, such as chemical 
and petrochemical plants, oil and gas systems 
[AMIRA-DTS2000, 1996]. The typical control 
issue involved in the system is how to keep the 
desired liquid level in each tank. The principle 
scheme of the model is shown in Fig 1. The basic 
apparatus consists of three plexiglass tanks 
numbered from left to right as T1, T2 and T3. 
These are connected serially with each other by 
cylindrical pipes. Liquid, which is collected in a 
reservoir, is pumped into the first and the third 
tanks to maintain their levels. The level in the tank 
T2 is a response which is uncontrollable. It affects 
the level in the two end tanks. Each tank is 
equipped with a static pressure sensor, which gives 
a voltage output proportional to the level of liquid 
in the tank. 
Q1 and Q2 are the flow rates of the pumps 1 and 2. 
Two variable speed pumps driven by DC motor are 
used in this apparatus. These pumps are designed to 
give an accurate well defined flow per rotation. 
Thus, the flow rate provided by each pump is 
proportional to the voltage applied to its DC motor.  
There are six manual valves V1, V2...V6 that can 
be used to vary the configuration of the process or 
to introduce disturbances or faults. In our case the 
apparatus was configured so that the valves V3 and 
V5 were closed and the remaining valves were 
open. 

In our case, the model was controlled as a two 
input – two output (TITO) system. The outputs are 
controllable liquid levels of tanks T1 and T2 and 
the inputs are the pump flow rates Q1 and Q2. Each 
pump flow rate affects both liquid levels. This is 
the coupling. The systems inputs and outputs 
interact and the whole system is a multivariable 
system. 
The three – tank – system is a nonlinear system 
with variable parameters. The nonlinear behaviour 
is caused by characteristics of the valves, pipes and 
pumps. Additional nonlinearities are due to air 
bubbles which are present in the pipes and valves. 
The bubbles deflate from the pipe system in certain 
moments.  

 
Figure 1. Principle scheme of three – tank – system 

 
3  Mathematical Model of the Controlled 
Process 

 A simplified analytical model of the three – tank – 
system, based on physics and the equipment 
construction where all the parameters have physical 
interpretations, is presented in [AMIRA-DTS2000, 
1996]. Some simplifications were required during 
its derivation and some assumptions with limited 
accuracy were used. The laboratory model is a 
nonlinear system, as it was mentioned above. Self-
tuning controllers are a possible approach to the 
control of this kind of system. The nonlinear 
dynamics are described by a linear model in the 
neighbourhood of a steady state. A suitable model 
of the real object for control with self-tuning 
controllers is an input–output model. This is a 
standard approach for self-tuning controllers. 
Instead of the often tedious construction of a model 
from first principles and then calculating its 
parameters from plant dimensions and physical 
constants, a general model is chosen and its 
parameters are identified from data. It is a model of 
the system behaviour and its parameters do not 
necessarily have physical interpretations. Of 
course, not all properties of the plant can be 
extracted from the data in this way, but when the 
dominant properties are modelled, the result is 
sufficient for controller design. The advantages of 
this kind of model are its simplicity and accuracy in 
the operational range in which the input–output 
dependence is measured.  



It was necessary to determine a structure for the 
model in advance. The aim here was to find 
experimentally the simplest possible structure of 
the model. The parameters are identified during the 
process of recursive identification from the 
measured input and output signals.  
A general transfer matrix of a two-input–two-
output system with significant cross-coupling 
between the control loops is expressed as:  
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where ( )zU  and ( )zY  are vectors of the 
manipulated variables (the pump flow rates) and 
the controlled variables (liquid levels), 
respectively. 
( ) ( ) ( )[ ]Tzuzuz 21 ,=U     ( ) ( ) ( )[ ]Tzyzyz 21 ,=Y    (3) 

It may be assumed that the transfer matrix can be 
transcribed to the following form of the matrix 
fraction: 
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where the polynomial matrices 
[ ] [ ]1

22
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22 , −− ∈∈ zRzR BA  are the left coprime 
factorizations of matrix ( )zG  and the matrices 

[ ] [ ]1
221

1
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factorizations of ( )zG . The model can be also 
written in the form 
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(5) 

In case of decoupling control using a compensator 
it is useful to consider matrix ( )1−zA  as diagonal. 

If the matrix ( )1−zA  was assumed to be non – 
diagonal, it would have to be included into the 
compensator. Then, the order of the controller and 
sophistication of the closed loop system would be 
increased. This is comprehensively explained in the 
section V. The control algorithm was first designed 
for a model with polynomials of the first order. 
This model proved to be unsuitable for the process 
description and satisfactory control results were not 
achieved. Consequently, the algorithm was 
designed for a model with second-order 
polynomials. The polynomial orders in this model 
do not correspond with the orders of transfer 
functions among the inputs and outputs which were 
derived in [AMIRA-DTS2000, 1996]. These 
particular transfer functions have various orders. 
However, from the point of view of the control 
system design it is useful when the matrix ( )1−zA  
has on the main diagonal polynomials of the same 
order. This simplified model proved to be effective 
and sufficiently complex to describe the process, 

while enabling quite simple computation of the 
controller. The controller described below is based 
on this model. The model has 12 parameters: 
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4  Design of Decoupling Controllers 
 There are several ways to control multivariable 
systems with internal interactions. One possibility 
is a serial insertion of a compensator ahead of the 
system [Krishnawamy et al., 1991; Peng, 1990; 
Tade et al., 1986; Wittenmark et al., 1987]. The 
objective, in this case, is to suppress undesirable 
interactions between the input and output variables 
so that each input affects only one controlled 
variable. The block diagram for this kind of system 
is shown in Fig. 2 (R is a transfer matrix of a 
controller and C is a decoupling compensator). 

 
Figure 2. General scheme of closed loop with compensator 

The resulting transfer matrix H is then determined 
by (operator z-1 will be omitted from some 
operations for the purpose of simplification) 

GCH =                                (8) 
The decoupling conditions are fulfilled when the 
matrix H is diagonal. 
The matrix B can be written as  
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and then the matrix H as 

xxz HACBAH 111 −−− ==                (10) 
As it was mentioned above, the matrix A was 
chosen to be diagonal. The objective of this 
simplification is apparent from the equation (10). If 
the matrix A was assumed to be non – diagonal, it 
would have to be included into the compensator 
(AA-1=I) to obtain a diagonal matrix H. Then, the 
order of the controller and sophistication of the 
closed loop system would be increased. According 
to this assumption, the compensator C must be 
chosen so that multiplication of the matrix Bx and 
the compensator leads to a diagonal matrix Hx. 
 A detailed block diagram of the closed loop 
system with the compensator is shown in Fig. 3. 



 Figure 3. Detailed scheme of closed loop with compensator 

The two compensators which are presented in this 
paper will be further referred to as C1 and C2. The 
corresponding resulting transfer matrices will be 
referred to as H1 and H2. 

A. Design of controller with compensator C1  

The compensator C1 is defined by the following 
expression 
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The multiplication of the matrix Bx and the 
compensator results in a diagonal matrix H1.  
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The matrix of the controller can be defined by the 
following expression             
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Generally, the vector ( )1−zW  of input reference 
signals is specified as 

( ) ( ) ( )111 −−−= zzz w hFW                    (14) 
In case of control of the three – tank - system, the 
reference signals were considered as step functions. 
In this case ( )1−zh  is a vector of constants and 

( )1−zwF  is expressed as 
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The controller was designed so that two basic 
requirements on control were fulfilled: stability of 
the closed loop system and asymptotic tracking of 
the reference signals. 
A condition of stability was obtained from the 
transfer function of the closed loop system. It is 
possible to derive the following equation for the 
system output  

( )YWQPFHAQEPFHAY −== −−−−−− 11
1

111
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This equation can be modified using the right 
matrix fraction of the controller into the expression 
defining the transfer function of the closed loop 
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1
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The determinant of the matrix in the denominator 

( 111 QHAFP + ) is the characteristic polynomial of a 
MIMO system.  The roots of this polynomial 
matrix are the ruling factors for the behaviour of a 
closed loop system. The roots must be inside the 
unit circle (of the Gauss complex plain), in order 
for the system to be stable. Conditions of BIBO 

(bounded input bounded output) stability can be 
defined by the following diophantine equation  

MQHAFP =+ 111                       (18) 

Where [ ]1
22

−∈ zRΜ  is a stable diagonal 
polynomial matrix. A right pole – placement of the 
matrix M is very important in order to achieve 
good control performance.  
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Further problem to be solved is the asymptotic 
tracking of the reference signals. It is possible to 
derive the following equation for a vector of 
control errors 

( ) hAFQHAFPFPYWE 11
1111

−−+=−= w     (20) 
To fulfill the requirement on the asymptotic 
tracking, the denominator of the reference signals 
(matrix Fw) must be eliminated from the 
expression for the permanent control error. For this 
purpose, the compensator F was included into the 
controller.  Asymptotic tracking of the reference 
signals is then obtained if FP1 is divisible by Fw. 
The compensator F is a component formally 
separated from the controller (Fig. 3). If the 
reference signals are step functions, then F is an 
integrator. 

( ) ⎥
⎦

⎤
⎢
⎣

⎡

−
−

=
−

−
−

1

1
1

10
01
z

z
zF               (21) 

The degree of the controller polynomial matrices 
depends on the internal properness of the closed 
loop. The structure of matrices P1 and Q1 was 
chosen so that the number of unknown controller 
parameters equals the number of algebraic 
equations resulting from the solution of the 
diophantine equation using the method of the 
uncertain coefficients. The matrices of the 
controller take the following forms:  
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The solution of the diophantine equation (18) 
results in a set of eight algebraic equations with 
unknown controller parameters. Using matrix 
notation the algebraic equations can be expressed 
in the following form 
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The controller parameters are obtained by solving 
these equations. The parameters are then used for 
computation of a control law 
The control law emerges from the block diagram as  
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B. Design of controller with compensator C2 

The compensator C2 was chosen as  
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The resulting diagonal transfer matrix H2 then 
takes the form 
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Further procedure of the controller design is 
analogical to the procedure presented in the 
subsection A. Analogical expressions to the 
expressions (13), (16), (17), (18), (20) and (25) are 
valid. Only the compensator C1 is replaced by the 
compensator C2 and the matrix H1 is replaced by 
the matrix H2. The matrices of the controller P1 and 
Q1 as well as the matrix M are defined by the 
expressions (22), (23) and (19).   
Algebraic equations with unknown controller 
parameters results from the solution of the 
Diophantine equation  
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5  System Identification 
 The control algorithms were applied as self tuning 
controllers (as it was introduced in sections 2 and 
3). Self-tuning control is based on on-line 
identification of a model of a controlled process. 
Each self – tuning controller consists of an on – 
line identification part and a control part.  
Various discrete linear models are used to describe 
dynamic behaviour of controlled systems. 
Overview of these models is given for example in 
[Nelles, 2001]. The most widely applied linear 
dynamic model is the ARX model. Usually the 
ARX model is tested first and only if it does not 

perform satisfactory more complex model 
structures are examined. But this is not the case 
because the ARX model matches the structure of 
many real processes. The parameters can be easily 
estimated by a linear least squares technique. The 
ARX model describing our TITO process is 
defined as 
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where n1(k), n2(k) are non-measurable disturbances 
The parameter vectors are specified as shown 
below: 
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When using the least squares method, the influence 
of all measured input and output samples to the 
parameter estimates is the same. This is 
inconvenient for identification of nonlinear 
systems, where changes of the identified 
parameters are expected. Tracking of changes of 
the parameters can be achieved by application of 
exponential forgetting. This technique ensues from 
the assumption that new data describes the 
dynamics of an object better than older data, which 
are multiplied by smaller weighting coefficients. In 
case that the identified plant is insufficiently 
activated – it means that the input and output 
signals are steady (this situation is typical for 
closed control systems), the exponential forgetting 
factor can cause numerical instability of the 
identification algorithm. A possible solution of this 
problem is application of the adaptive directional 
forgetting [Bittanti et al., 1990; Kulhavý, 1987]. 
This technique changes the forgetting factor 
according to the level of information in the data. 
Considering parameters changes of the nonlinear 
three – tank – system and the expected insufficient 
activation of the controlled system, the recursive 
least squares method with adaptive directional 
forgetting was applied. The parameter estimates, 
the covariance matrix and the directional forgetting 
factor are then actualised according to recursive 
expressions. 

6  Experimental Examples 

 The model was connected with a PC equipped 
with a control and measurement PC card. Matlab 
and Real Time Toolbox were used to control the 
system. 



For the experiments presented in this paper, the 
three – tank – system was configured in such a way 
that the valves v3 and v5 were closed and the 
remaining valves were open. 
An approximate sampling period was found on the 
basis of measured step responses so that ten 
samples cover important part of the step response. 
The best sampling period T0=5 s was then tuned 
according to experiments. 
Another problem was finding of suitable poles of 
the characteristic polynomial. The pole - 
assignment is a natural part of the polynomial 
method. Quality of control performance is given by 
pole – placement of the characteristic polynomial. 
In comparison with controllers for SISO control 
loops, pole – placement of multivariable systems is 
much more complicated. Process of searching 
suitable poles was following: at first a multiple pole 
on the real axis was chosen. This pole was moved 
along the real axis. Control results obtained for 
particular experiments were compared and a 
suitable multiple pole was found. Then, a suitable 
conjunction of various poles in the neighbourhood 
of the multiple pole was experimentally searched. 
The suitable right side matrix, obtained from a 
number of experiments, is as follows: 
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Figures 4 and 5 show time responses of the control 
when the initial parameter estimates were chosen 
without any a priori information. The reference 
trajectories contain frequent step changes in the 
beginning of experiments to activate input and 
output signals and improve the identification. 
The controlled variables y1 and y2 are liquid levels 
of the tanks T1 and T2. The manipulated variables 
u1 and u2 are flow rates into the tanks. As w1 and w2 
are denoted desired liquid levels in the particular 
tanks (reference signals). 

 
Figure. 4.  Control of the three – tank – system with 

compensator C1 

 
Figure. 5.  Control of the three – tank – system with compensator 

C2 
 
7  Conclusions 
 Decoupling multivariable self - tuning controllers 
were proposed and verified by control of nonlinear 
time varying system. The adaptive control strategy 
was applied especially due to nonlinear behaviour 
of the controlled system.   
It is necessary to recognize that self-tuning 
controllers do not work satisfactorily in the initial 
adaptation phase if the initial parameter estimates 
are chosen without a priori information. However, 
the most important property for practical use of 
self-tuning controllers is their performance after the 
adaptation phase.  
With regards to decoupling, interactions between 
control loops were not fully eliminated. Overshoots 
of one controlled variable caused by step changes 
of the reference signal of the other one are obvious 
from Fig. 4. and Fig. 5. This is caused by fact that 
the decoupling controllers are based on inversion of 
the controlled plant. Such controllers are sensitive 
to differences between the model and the plant. But 
size of the overshoots is negligible in comparison 
to size of the step changes. This indicates that 
interactions between the control loops were 
reduced. The controller with the compensator C2 
performed slightly better. This is evident from the 
control responses in Fig. 4 and Fig. 5. 
General principles were elaborated on a specific 
system with two inputs and two outputs that is 
often applicable in industrial practice. Control 
laws based on specific model were derived in the 
form of self-contained expressions that is 
especially useful for practical applications of 
control on common industrial devices. An 
advantage of the proposed strategy lies in its 
simplicity and applicability. The control tests 
executed on the laboratory model provided very 
satisfactory results, even though its nonlinear 
dynamics were described by a linear model. The 
laboratory model simulates technological 



processes that frequently occur in industry, and 
the tests proved that the proposed method could be 
implemented and used successfully to control such 
processes.  
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