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We study the stability and dissipativity of viscoelastic plates with constant thickness
under dynamic loads given by the equations ([1, 7])
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In system (1) w is the deflection, F' is the stress function, D is the plate’s boundary
stiffness, h is the thickness, p is the material’s density and E is the elastic modulus. R*
denotes an integral operator with the relaxation kernel R(t) = kt* 'e=!, where k > 0,

e >0 and « € [0, 1] are parameters. The expression L(w,w) is defined by
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The boundary conditions may be expressed as:
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In (3) — (6) p is Poisson’s ratio ; a > 0 and b > 0 are the length and the width of the
plate ; k1, ko and 0 are certain real parameters.
If we assume that the plate is hinged at its boundaries, the solution w of the boundary-
value problem (1) — (6) can be expressed as
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Using the Bubnov-Galerkin method one obtains (|1, 7|) for a = b = [ a system of nonlinear
integro-differential equations which can be written for z := w,,, as
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where (R*f)(t) = k f(f kr=te=T f(r)dr and Q,w,qo,q1, k1 and 6 are also parameters.
For certain cases of these parameters we get the linear Mathieu equation

F4+ Q%1 —qocosft)z =0 (9)



and, with a further parameter g4, the nonlinear Mathieu-Duffing equation
F4+0%(1 —qgocosOt)z +qu2° =0. (10)

Exploring frequency-domain methods developed in |10, 5] we derive sufficient conditions
for the boundedness of solutions on R and the dissipativity of equations of the type (8)
for nonsingular kernels (v = 1). Under these conditions dynamic buckling is impossible.
In particular we investigate the class of systems with periodic in time linear and nonlin-
ear parts with the help of the frequency theorems for nonautonomous periodic in time
equations ([9, 3]). We also consider the case of a singular kernel (o € (0,1)). This leads
to ordinary differential equations with fractional derivatives (|2]). The functional-analytic
investigation of such singular differential equations can be done in certain interpolation
spaces ([8]). For the characterization of boundedness properties of the solutions and their
regularity we use the solvability of Riccati equations for plate problems ([6]).
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