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We study the stability and dissipativity of viscoelastic plates with constant thickness
under dynamic loads given by the equations ([1, 7])
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In system (1) w is the de�ection, F is the stress function, D is the plate's boundary
sti�ness, h is the thickness, ρ is the material's density and E is the elastic modulus. R∗
denotes an integral operator with the relaxation kernel R(t) = ktα−1e−εt, where k > 0,
ε > 0 and α ∈ [0, 1] are parameters. The expression L(w,w) is de�ned by
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The boundary conditions may be expressed as:
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In (3) � (6) µ is Poisson's ratio ; a > 0 and b > 0 are the length and the width of the
plate ; k1, k2 and θ are certain real parameters.
If we assume that the plate is hinged at its boundaries, the solution w of the boundary-
value problem (1) � (6) can be expressed as
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Using the Bubnov-Galerkin method one obtains ([1, 7]) for a = b = l a system of nonlinear
integro-di�erential equations which can be written for z := wmn as

z̈ + Ω2(1− q0 cos θt)z − ω2R∗z + q1z(1−R∗)z2 = 0 , (8)

where (R∗f)(t) = k1

∫ t
0
kτα−1e−ετf(τ)dτ and Ω, ω, q0, q1, k1 and θ are also parameters.

For certain cases of these parameters we get the linear Mathieu equation

z̈ + Ω2(1− q0 cos θt)z = 0 (9)



and, with a further parameter q4, the nonlinear Mathieu-Du�ng equation

z̈ + Ω2(1− q0 cos θt)z + q4 z
3 = 0 . (10)

Exploring frequency-domain methods developed in [10, 5] we derive su�cient conditions
for the boundedness of solutions on R+ and the dissipativity of equations of the type (8)
for nonsingular kernels (α = 1). Under these conditions dynamic buckling is impossible.
In particular we investigate the class of systems with periodic in time linear and nonlin-
ear parts with the help of the frequency theorems for nonautonomous periodic in time
equations ([9, 3]). We also consider the case of a singular kernel (α ∈ (0, 1)). This leads
to ordinary di�erential equations with fractional derivatives ([2]). The functional-analytic
investigation of such singular di�erential equations can be done in certain interpolation
spaces ([8]). For the characterization of boundedness properties of the solutions and their
regularity we use the solvability of Riccati equations for plate problems ([6]).
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