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Abstract— We propose a general theoretical framework that If Q is the composite system obtained from two other
is suitable to study a wide class of stabilization problemsof  quantum systemsQ,, Q,, the corresponding mathemati-
guantum Markovian dynamical systems. Building on system- o\ gascription is carried out in the tensor product space,

theoretic ideas, we propose definitions of invariant and atac- B .
tive quantum subsystem, characterize Markovian invariane Hiz = Hi © Ho [7], observables and density operators

properties, and provide sufficient conditions for attraction. The ~ b€ing associated with Hermitian and positive-semidefinite
general framework and results are illustrated by addressiy normalized operators oK1, respectively. Theartial trace

the potential of output-feedback Markovian control strategies  gver H, is the unique linear operator trage) : B(Hi2) —
for quantum pure statejstablllzatl.qn.. In part[cular, constructive B(H,), ensuring that for every; € B(H;), X € B(Ha),
results for the synthesis of stabilizing semigroups in arklirary t X Xo) — Xt X
finite-dimensional Markovian systems are established. race (X, ® _2) = Xtrace Xy). . .
In general, in the presence of internal couplings, quantum
measurements, or interaction with a surrounding environ-
|. BACKGROUND AND MOTIVATIONS ment, the evolution of a subsystem of interest is no longer
unitary and reversible, and the general formalismoptn

Stabilization problems are of central relevance for man&uantum systemis required [9], [2], [3]. A wide class of

guantum control applications, ranging from state prejpamat . .
of quantum-optical and nano-mechanical systems to gen en quantum systems obeys Markovian dynamics [2], [10],

. . o . -1]. Let 7 denote the physical quantum system of interest,
ation of noise-protected realizations of quantum informa:" . . ;
o e . . ._Wwith associated Hilbert spaéé;, dim(;) = d. Assume that
tion in realistic devices [1]. Dynamical systems undergomwe have no access to the quantum environment surroundin
Markovian evolution [2], [3] are both widely relevant from aI and that the dvnamics ?@ H;) is continuous in time 9
physical standpoint and present distinctive control ks th’e state chan e)::\t cachs 0 E)eiln described by a Tracé-
— preventing, in particular, open-loop quantum-engimegri Y 9 y

and stabilization methods based on dynamical decoupli Fyeserving, Completely-Positive (TPCP) mag) [12], [1].

to be viable [4], [5]. However, we show here how a Wid? differential equation for the density operatorBfmay be

class of stabilization problems can be effectively treategegv?d_tprov;jed g?tz forwatrd c%mposmorll law hOIdS'

in a general framework, provided battractive quantum a or?el-r;)leltr):met(((agr far)ﬁily %l]fa_lrjpucrg nxgggch tsim(;?r?#;

subsystemsAfter introducing the main ideas and deﬁnitionssatisfies- =

along with some general results, we shall explore their, '

application to pure-state preparation problems for Maidov (') To=1

output-feedback control. We refer to the forthcoming jairn (”) TioT, = 72““3’.%’ 5= 0’. .

version of the present paper [6] for detailed proofs we shaqll") trace(Z;(p) X) i1s a continuous function of, Vo €

omit or merely sketch in the following sections. D(Hy), ¥X € B(Hy). o _ _
Consider a separable Hilbert spageover the complex Due to the trace and positivity preserving assumptions, a

field C. Let B(H) represent the set of linear boundedDS is a semigroup of contractions. It has been proyed [10],

operators orf, $(H) denoting the real subspace of Her-[13] that the Hille-Yoshida generator for a QDS exists and

mitian operators, witi, O being the identity and the zero ¢an be cast in the following canonical form:

operator, respectively. In the standard statistical fdatin . p
of quantum mechanics [7], [8], the dimension of the Hilbert —%lH, p(t)] + > wD(Li, p(t)) 1)
spaceH associated with the quantum system of interéxst, k=1

is determined by the physics of the problem. In what follows,
we considefinite-dimensionasystems, i.e. dif{) < —oo.
Our (possibly uncertain) knowledge of the state @fis
condensed in density operatop, with p > 0 and tracép) =
1. Density operators form a convex 8{H) C $H(H), with

p
. 1
— —ilH, p(t)] + D" (Erp(®)L] = S{LLLk, p(D})
k=1
with {~:} denoting the spectrum of. Theeffective Hamil-
tonian H and thelLindblad operatorsl; specify the net
one-dimensional projectors corresponding to extremet;aoin(affeCt of thg Markovian environment on the dynamlcg. In
(pure statespiy = ) (1)) general, H is equal to the isolated system Hamiltonian,
1) ' H,, plus a correctionHp,, induced by the coupling to the
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model for the joint system-environment dynamics undet{r have no effect on the state Hgs. We shall denote by
appropriate limiting conditions (the so-called “singutanu-  J¢(H;) the set of states initialized in this way.

pling limit” or the “weak coupling limit,” respectively [2]  pefinition 4 (Invariance):Let Z evolve under TPCP maps
[3]). In most physical situations, however, carrying outisu 7. s is an invariant subsystenif Vps € D(Hs), pr €
a procedure is unfeasible, typically due to lack of completg,(HF), the state off obeys

knowledge of the full microscopic Hamiltonian. A Marko-

vian generator of the form (1) is then usually assumed op ( ps @ pr | 0 > _ < 75 (ps) @ T," (pr) | 0 > £>0

a phenomenological basis. In practice, it is often the casé 0 |0 0 [0 )" =7
that a direct knowledge of the noise effect may be assumed, 4)
allowing to specify the Markovian generator by giving awhere, for everyt > 0, 7%(-) and Z;"(-) are TPCP maps
set of noise strengths, and Lindblad operatord, (not ON ‘Hs and Hp, respectively, not depending on the initial
necessarily orthogonal or complete) in (1). Each of theeoisStates.

operatord.; may be thought of as corresponding to a distinct Thus, a subsystem is invariant if time evolution preserves
noise channeD(Ly, p(t)), by which information irreversibly the initialization of the state, that is, the dynamics isfated

leaks from the system to the environment. within Js(H ;). For Markovian evolution ofZ, Definition 1
requires bot{7,°} and{7,7'} to be QDSs on their respective
Il. QUANTUM SUBSYSTEMS domain.

Quantum subsystems are the basic building block for W& now provide two characterizations of dynamical mod-
describing composite systems in quantum mechanics [A!S able to ensure invariance for a fixed subsystem — the
From both a conceptual and practical standpoint, renew&§cond explicitly constraining the block-structure of tha-
interest toward characterizing quantum subsystems in a JAiX representation of the operators specifying the Makiov
riety of control-theoretic settings is motivated by Quantu 9€nerator.

Information Processing (QIP) applications [1]. A definitio  Theorem 1 (Markovian invariancejs supports an in-
suitable to our scopes is the following: variant subsystem under Markovian evolution &ty iff

Definition 2 (Quantum subsystemA quantum subsystem V ps € ©(Hs), pr € D(Hr) the following conditions hold:

S of a systentZ defined onH; is a quantum system whose

state space is a tensor facik of a subspacé{sy of H;, %p(t) - ( ESF(pS(t()) @ pr(t)) I 8 ) , Vt>0, (5)
Hi=Hsr ®Hr = (Hs @ Hr) ® H, (2) trace- [Lsr(ps(t) @ pr(t)] = Ls(ps(t)), Vt>0, (6)

for some factorHr and remainder spacé{i. The set where Lsr and £g are QDS generators 0Hs ® Hr and
of linear operators onS, B(Hg), is isomorphic to the Hs, respectively.

associative) algebra dri; of the formX; = XsQIr®O0x. L .
( ) alg ! ! s©lrOUR Corollary 1 (Markovian invariance):Assume thatH; =

| tLet " :ndim(Hg)’ ]f - dm;(HTF)’ g = iﬁm(t{ﬁ%)' and | (Hs ®Hr)®Hg, and letH, {L;} be the Hamiltonian and
et {[¢7)}71, {|¢1 ) }r=1> {|¢1")}i=, denote orthonorma the error generators of a Markovian QDS as in (1). Thégn

bases forHs, Hr, Hg, respectively. Decomposition (2) is supports an invariant subsystem ‘fk:
then naturally associated with the following basis t¢y:
n r Lsix®Lpg | Lpg
{lom} = {165) @ l60) )7y U o)} Ly = ( 0 L
This basis induces a block structure for matrices acting on
H[:

) 1
iHp — 5 > (Lhp® Lk Lek =0, (7)

Xsr | Xp i
X = X < ) 3 Hsp=Hs®Ip +1s® Hp,
Q R

Where, in generalXSF # XS ® XF- Let HSF be the pro- where for eachk eitherLS,k = HS or LF,k = ]IF (OI’ bOth)
jection operator onté{s © Hp, that is,Illsp = ( Isr | 0 ).

) B. Attractive subsystems
A. Invariant subsystems ) o
If we require a subsystem to have dynamics independent

V\ﬁ start by investigatinbg in which segsed, a;nd (ljmde_r Wh?cﬁom the rest also in the case it is not “perfectly initiatiZze
conditions, a quantum subsystem may be defined as Invariagl. i, pefintion 3, it turns out [6], [14] that an additional

Definition 3 (S_te_ltg _ini_tializgtion):T_he system I with contraint on the Lindblad operators is required. That is, it
statep € D(H,) is initialized in H.s with stateps € D (Hs) must beLp = 0 for every k, which basically decouples

if the blocks ofp satisfy: the evolution of theSF-block of the state from the rest.

() psr=ps @ pr for somepr € D(Hr); However, this imposes tighter conditions on the noise opera
(i) pp=0,pr=0. tors, which may be demanding to ensure and, from a control
Condition (ii) in the above Definition guarantees that=  perspective, leave less room for Hamiltonian compensation

tracq:(HSFpHTSF) is a valid state ofS, while condition (i) of the noise action (see Section IlI-A). In order to both
ensures that measurements or dynamics affecting the factmtdress situations where such extra constraints cannot be



met, as well as a question which is interesting on its owrcomputingZ(p), we get;
we explore conditions for a subsystem to be attractive:

Definition 5 (Attractive Subsystemiissume thatH; = tracéllg L(p)] = —trace(ZL};ykLp,kpR), 9)
(Hs®@Hr)P®Hg. ThenHg supports an attractive subsystem k
with respect to a family{7;}:>o of TPCP maps ifvp €
D(H;) the following condition is asymptotically obeyed:

lim (%(p) 3 < ps(t) ® pr(t) | 0 )) o @ Vi(p) = traceIrL(p)) (1 + V(p)) + traceIlrp)V (p) <0,

that is always negative or zero. Hence

—oc0 0 0

' | for every®(H;), and it is zero only inWW N Z U Js(H;).
where ps(t) = tracqm[HSFTt(p)HTSF], pr(t) = 1 Wn2Z C Js(Hr), by applying Krasowskii-LaSalle
traces [[ls7; (p) 15 ). invariance theorem, we conclude. [

An attractive subsystem may be thought of as a subsysterhe following result immediately follows:
that “self-initializes” in the long-time limit, by somehow Corollary 2: AssumeH; = Hs® Hgr (Hr = C), and let
reabsorbing initialization errors. Although such a ddd#a Hgs support an invariant subspace underAssume that
behavior only emerges asymptotically, for QDSs one can see
that convergence is exponential, as long as some eigesvalue Z L}_,kLP,k >0, (10)
of £ have strictly negative real part. We begin with a negative k
result which, in particular, shows how the initializatifnee

. e ) where> means strictly positive. Thel s is attractive.
and attractive characterizations are mutually exclusive.

Proof. It suffices to note that (10) guarantees that (9) in

Proposition 1: Assume H; = (Hns @ Hr) © Hr, the proof of the Theorem above is zero jfi; = 0. The
Hr # 0, and letH, {L} be the Hamiltonian and the error conclusion follows by taking & (p) constant and positive
generators as in (1), respectively. gtys support a NS. If gp D(Hy). -

i = i i
Lpk=Lq, = 0for eyferyk, then?s is not attra(?tfve. Remark:From considerations on the rank of the L.h.s. of
Remark: The _condmons of the above Proposition arg10) and then x r dimension of Lpy, the condition of
obeyed, in particular, for NSs in the presence of pure%orollary 2 may be obeyed only if > r, i.e. dim(Hg) >

iti i i 7T L ; . . .
Hermitian noise operators, that id,; = L, Vk. As @ CON- i (3,). An application of this result will be given in
sequence, attractivity is never possible tmital Markovian  gection I11-A.

noise, as defined by the requirement of preserving the fully
mixed state. Still, even if the conditiohp;, = Lgk =

0 condition holds, attractive subsystems may exist in the 1. M ARKOVIAN EEEDBACK CONTROL
pure-factor case, wher&r = 0. Sufficient conditions are
provided by the following: Building on pioneering work by Belavkin [17], it has been
Proposition 2: AssumeH; = Hs ® Hr (Hr = 0), and long acknowledged for a diverse class of controlled quantum
let Hg be invariant under a QDS, hence of the form system that intercepting and feeding back the information
leaking out of the system allow to better accomplish a
L=Ls®p+Is®Lp. number of desired control tasks (see [18], [19], [20], [21],

[22], [23] for representative contributions). This reasithe
ability to both effectively monitor the environment and don
. ) ) . .. tion the target evolution upon the measurement record. The
Interesting  linear-algebraic conditions for determining,qjc setting we consider is a measurement scheme which
whether a generatofr(-) is has a unique attractive state,imicks optical homo-dyne detection for field-quadrature
but not necessarily pure, are presented in [15], [16]. SinGGeasurements, whereby the target system (e.g. an atomic
the m_aln_apphcatlon for the prgsent paper vyﬂl;bmestate_ . cloud trapped in an optical cavity) is indirectly monitored
§tabll|zat|on problems, our main emphasis is on atiragtivi i3 measurements of the outgoing laser field quadrature [18]
in the subspace casg. [24]. The conditional dynamics od the state is stochastic,
Theorem 2 (Attractive Subspacejssume?; = Hs @  griven by the fluctuation one observes in the measurement.
Hr (Hp = C), and let}s be an invariant subspace undercgnsigering a suitable feedback infinitesimal operator de-
L. Assume that there exist a functioiélp) > 0 0nD(H1),  termined by afeedback HamiltonianF, and taking the
.cont|nuous~thh continuous derivative, such thétp) < 0 expectation with respect to the noise trajectories, thidddo
in ©®(H;) \ Is(Hr). Let the Wiseman-MilburMarkovian Feedback Master equation

If Lr(-) has a unique attractive statgr, then Hg is
attractive.

W = {peDH)|V(p) =0}, (FME) [18], [19]:
Z = € D(Hy)|tracellg L =0}, d 1
{p € D(rr)|racellrL(p)] = 0} Ept:]—"(H+§(FM+MTF),pt)—i-D(M—iF,pt). (11)
wherelly is the orthogonal projector oK. If WN Z C
Js(Hr), thenHg is attractive. In the following sections, we will tackle state-stabilizat

Proof. ConsiderV;(p) = tracgIlrp) + tracgIlrp)V(p). It and NS-synthesis problems for controlled Markovian dynam-
is zero iff pg = 0, i.e. for perfectly initialized states. By ics described by FMEs.



A. Control assumptions B. Pure-state preparation with Markovian feedback:
The feedback state-stabilization problem for Markoviafraradigmatic examples

dynamics has been exte_ns_ively studied for the single-qubit| et ys first consider a two-dimensional system. Our per-
case [25], [26]. In the existing literature, however, thanst gpective differs from the one presented in [25] not only
dard approach to design a Markovian feedback strategy is facause we mainly focus on continuous measurement of
assign both the measurement and feedback operafofs  Hermitian spin observablebut, more importantly, because
and to treat the measurement strength and the feedback 98 start from identifying what constraints must be imposed
as the relevant control parameters accordingly. to a two-dimensional Lindblad equation as in (1) for ensyirin
Throughout the following sections, we will pretend to havenat one of the system’s pure states is a stable attractor.
more freedom, considering, for a fixed measurement operai@fithout loss of generality, let such a state be written as

M, both F and H as tunable control Hamiltonians. pa = diag(1,0), and write, accordingly,

Definition 6 (CHC): A controlled FME of the form (11)
supportcomplete Hamiltonian contrqICHC) if (i) arbitrary Ly = < les lip > H— ( hs hp ) '
feedback Hamiltoniang” € $(H;) may be enacted; (ii) k@ lkr hp  hr

arbitrary constantcontrol perturbationd. € $H(H;) may ) o
be added to the free Hamiltonidi. As a straightforward application of the results of the

rPrevious Section, we have the following.

This leads to both new insights and constructive co Proposition 3: The pure statey — diag(1,0) is a stable

trol protocols for systems where the noise operator is a . : .
. attractor for a two-dimensional quantum system evolving
generalized angular momentum-type observable, for generi

finite-dimensional systems. Physically, the CHC assumptioaccOrOIIng to (1) iff:
must be carefully scrutinized on a case by case basis, since ) 1 .

constraints on the form of the Hamiltonian with respect ® th ihp — 3 Z lr.slk.p =0, (16)
Lindblad operator may emerge, notably in so-called weak- k
coupling limit derivations of Markovian models [2]. A first,
interesting consequence of assuming CHC emerges direcg

from the following observation:
Lemma 1:The Markovian generator

lk,og =0, Vk, a7)

fid there exists & such thatly, p # 0.
We provide next a characterization of the stabilizable

p manifold.
Pt = —i[H, p] + ZD(Lk,pt) (12) Proposition 4: Assume CHC. For any measurement op-
k erator M, there exist a feedback Hamiltoniai and a
is equivalent to Hamiltonian compensatiofi. able to stabilize an arbitrary

desired pure statg, for the FME (11) iff

[pa, (M + M")] # 0. (18)
Proof. Consider as before a basis whege= diag(1,0), and
let M* and M4 denote the Hermitian and anti-Hermitian
In=ILp+cal, cxeC, (14) PartofM, resp(_ectively. By (18)M cannot be diagonal in
oo Z(C*L . LT) (15) the chosen basis. In fact, assuié’ to be diagonal, then, by
corr - kk T CRE) Proposition 3,//° — F must be brought to diagonal form to

Note that for Hermitiarl, and reale, H... = 0. In general ensure invariance gf;. Hence, by the same result it follows
’ corr — . 1

by exploiting CHC, we may vary the trace of the Lindbla .thatpd gannot be made attract|v-e. On the othe_r hanMﬁ’
not diagonal, we can always find an appropri&te order

operators through transformations of the form (14), and, ‘tﬁ get an upper diagondl = M + i(MS — F), and H' —

needed or useful, appropriately counteract the Hamiltoni . . .
. . S ) T
correctionH,,, with a constant control Hamiltonian. Th|s% + (FM + M F)/_2' To conclude, it suffices _tp _dev,'se a
mpensation HamiltoniaH .. such that the conditioi{ H'+

may allow to stabilize subsystems that were not invariarﬁlO . o
y y )p — 3l5lp = 0 is satisfied. =

for the uncontrolled equatiomyithout directly modifying the ¢
non-unitary part The above proof naturally suggests a constructive algo-

Example 1.Consider a generator of the form: rithm for designin_g t_he feedback and correction Hamiltania

needed for stabilizing the intended pure state. From our
ip(t) = —i[o., p(t)] + (Lp(t)LT _ E{LTL p(t)}) analysis, we also recover the results of [25] recalled lgefor
dt - 2 ’ ’ For example, the states that are never stabilizable witen t
where . = o, + o4. Suppose that the task is to makecontrol assumptions of [25] are the ones commuting with
pa = diag(1,0) invariant. SinceHp = 0,Ls = 1,L, = 1, the Hermitian part of\/ = o, that is, M# = o,. On the
invariance is not ensured by the uncontrolled dynamics:z plane in the Bloch’s representation, the latter correspond
Using the above result, it suffices to apply a constargrecisely to the equatorial points. The following examples
Hamiltonian H.,,., = —i(L — LT) = oy. The desired state serve to illustrate the basic ideas we shall extend todthe
turns out to be also attractive, see Proposition 3 below. level case.

d

Ept = _Z[H + Hcorra pt] + ZD(Lk’ pt)7 (13)

k
where for allk:



Example 2: The simplest choice to obtain an attractiveand a Markovian feedback Hamiltonian:

generator is to engineer a dissipative part determined by 0 my 0 ... 0
L =04 = 0 1 . . —m 0
0 0 7
Let H = nolly +ngoz +nyoy +n,0,, With ng, ng, ny, n, € 2 _
R. Consider e.gM = 1o, and F = —10,. Notice that in L o ma—
this casej (FM +MTF) = 0, thusH' = H. Substituting in 0 -+ 0 -mg1 O

the FME (11), one clearly obtain the desired result, pravideii, ;. £0,fori=1,...,(d—1).

that H, = — — . .
¢ a0 = MyTy By contruction,F” and M play a role analogous to the,

Assume that it is_ possible to continuously _monitor a sin_glgmd% observables of thé — 2 case. Notice that their form
observable, e.gz, in the above example. Since the choicgg ot different from that of standard, higher-dimensicspih
of the reference frame for the spin axis is conventional, bypservables. The main advantage of Markovian feedback
suitably adjusting the relative orientation of the measest techniques with respect to other design strategies, based
apparatus and the sample, it is then in principle possible {, estimation of the underlying quantum state (so-called
prepare and stabilize any desired pure state with the SaB8yesian techniquisis the simplicity of adirect output-
control strategy. feedback loop- as opposed to the task of integrating’a
Example 3:Consider next a three-level system undergoingimensional stochastic master equation in real time, which
continuous observation of a spin observable, for instance:becomes rapidly prohibiting as grows. On the other hand,

01 0 direct feedback requires strong control capabilities aed p
J. = i 10 1. fect detection. The parameters one has to accurately tene ar
V2 01 0 the feedback and measurement operators, along with both the

_ ) system Hamiltonian and its control perturbation, if needed
Assume that our goal is to make the state= diag(1,0,0)  Also notice that Bayesian feedback-stabilization protsiem
attractive. In analogy with the above example, one is led tgsyally aim at stabilizing a pure state that commutes with

consider the feedback Hamiltonian a Hermitian observable, namely one of its eigenstates., This

A 0 —i O in the light of Proposition 4, would not be possible with
F=—Jy=——%1¢ 0 —i|, Markovian feedback. In the Markovian approach, however,
V2 0 ¢ O it is substantially simpler to stabilize states that are not

thereby obtaining: equilibrium points for the uncontrolled dynamics.
h 0 1 0 C. Imperfect detection case: Perturbative analysis
L= 7 0 0 1 From an experimental viewpoint, the perfect detection
0 0 O

assumption may seriously constrain the applicability & th

In fact, if we defineD = diag(1,0,0) andV (p) = Tr(Dp), @analysis and synthesis techniques developed so far. Never-

we getV(p) = —v/2pss. Therefore,V(p) is positive, has theless, for state stabilization problems, one may aséess t

negative semi-definite derivative, and the derivative i ze role of the perfect-detection hypothesis and the possitidi

in Z = {p|pss = 0}. By invoking Theorem 2V = {p|ps, = relaxit. If n <1, the FME is modified as follows [24]:

0}, the two sets are disjoint besigg itself, hence the state

is}attractive. Notice that this also provides an examplerof a a’ T ]:(H +1/2(FM + M'F), pt)

attractive state, which doemt satisfy the sufficient condition + +D(M — iF, p:) + eD(F, pt), (29)

of C_o_rollgry 2 (in f_act, Corqllary 2 is interesting for state, 1 are we defined — (1=n)/n.

stabilization only with two-dimensional systems [6]). In [2], generators of the form (1) are rewritten in a
The previous examples naturally extend to genéievel  convenient way by choosing a suitable Hermitian basis

systems, provided that similar structure of the observable jn B(H;) ~ C¥4 1 In such a basis, all density op-

ensured. Let the pure state to be FME-stabilized be writtesyators are represented W_dimensional vectorspy =

aspq = diag(1,0,...,0). (po, p1,-- -, paz—1)", where the first componept, relative
Proposition 5: Assume thaff is diagonal. The pure state to ﬁﬂd, is invariant and equal t% for TP-dynamics. Let

pa is a stable attractor for the FME (11) conditioned ovep, = (p1,..., ps2—1)’. Hence, any QDS generata(p)

the continuous measurement of the operator: must take the form:
0 m; O 0 ip:,ﬁ(p): 00 1/vd (20)
. . . dt C|D P
mp O : : :

M= l . . . Lin fact, endowingC?* ¢ with the inner product X, Y’) := tracg XTY")

0 . . . 0 ’ (Hilbert-Schmidt), we may use a basis where the first eleniﬁede]Id,
and complete it with a orthonormal set of Hermitian, trasgleperators.
Mmd—1 This can always be done for finité for example by employing the natural

0O -+ 0 mg_1 0 d-dimensional extension of the Pauli matrices [2], [27].



Assume that the dynamics has a unique attractive gtéte
Thus D must be invertible and we get:
(2]

1 1
va\ -p~'c )

. . 3
Consider now a small perturbation of the generator de-
pending on the continuous parametewith 1 —6 <n <1,  [4

and¢ sufficiently small so thatD +eD’) remains invertible.

The generator becomes:
d 01]0 0|0
om0~ [(25) v (]

and the new attractive, unique equilibrium state is:

[1]
p(o) —

[5]

1/Vd ) [6]
Pv ’

2D

[8]

1 1
5e) —
= \/g( —(D +¢eD")~HC +eC) ) [9]

Being 5(¢) a continuous function of, we are guaranteed [10]
that for a sufficiently high detection efficiency the stable

attractor will be arbitrarily close to the desired one incta [11]
norm. Therefore, if we relax our control task to a state

preparation problem with sufficiently high fidelity, this yna [12]
be accomplished with a sufficiently high detection efficignc
yet strictly less than 1. (3]

IV. CONCLUSION 14
We have revisited some fundamental concepts on Marko-

vian dynamics for quantum systems and reformulated tq%]
notion of a general quantum subsystemliimear-algebraic
terms. A complete characterization of invariant subsystem
for Markovian quantum dynamical systems has been pr&-dl
vided. When imperfect subsystem initialization is consédie

the conditions to be imposed on the Markovian generdt7]
tor become more demanding, motivating the new notion
of asymptotically stableattractive subsystemThe linear- 18]
algebraic approach we adopted, along with Lyapunov’s
stability techniques, provided us with explicit stabitipa
results that have been illustrated in simple yet paradig:mat[lg]
examples. [20]

In the second part of the work, the conditions identified
for subsystem invariance and attractivity serve as théirsgar 21]
point for designing output-feedback Markovian strategies
able to actively achieve the intended quantum stabilizeﬁéz]
tion. We have completely characterized the state-stailiitin
problem for two-level systems. While the analysis assumes
perfect detection efficiency, a perturbative arguments- ind(23!
cates how unique attractive states depend in a continuollﬁ]
fashion on the model parameters.

Further work is needed in order to establish entirel¥25]
general Markovian feedback stabilization results, intigd
finite bandwidth and detection efficiency, as well as simulta
neous monitoring of multiple observables. Among the mog#®!
interesting perspectives, additional investigation igureed
to establish the full power of Hamiltonian control and[27]
Markovian feedback in synthesizing NS structures. This may
point to new venues for producing protected realizations of
guantum information for physical systems whose dynamics
is described by quantum Markovian semigroups.
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