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Attractive Quantum Subsystems and Feedback-Stabilization Problems

Lorenza Viola and Francesco Ticozzi

Abstract— We propose a general theoretical framework that
is suitable to study a wide class of stabilization problems for
quantum Markovian dynamical systems. Building on system-
theoretic ideas, we propose definitions of invariant and attrac-
tive quantum subsystem, characterize Markovian invariance
properties, and provide sufficient conditions for attraction. The
general framework and results are illustrated by addressing
the potential of output-feedback Markovian control strategies
for quantum pure state-stabilization. In particular, constructive
results for the synthesis of stabilizing semigroups in arbitrary
finite-dimensional Markovian systems are established.

I. BACKGROUND AND MOTIVATIONS

Stabilization problems are of central relevance for many
quantum control applications, ranging from state preparation
of quantum-optical and nano-mechanical systems to gener-
ation of noise-protected realizations of quantum informa-
tion in realistic devices [1]. Dynamical systems undergoing
Markovian evolution [2], [3] are both widely relevant from a
physical standpoint and present distinctive control challenges
– preventing, in particular, open-loop quantum-engineering
and stabilization methods based on dynamical decoupling
to be viable [4], [5]. However, we show here how a wide
class of stabilization problems can be effectively treated
in a general framework, provided byattractive quantum
subsystems. After introducing the main ideas and definitions
along with some general results, we shall explore their
application to pure-state preparation problems for Markovian
output-feedback control. We refer to the forthcoming journal
version of the present paper [6] for detailed proofs we shall
omit or merely sketch in the following sections.

Consider a separable Hilbert spaceH over the complex
field C. Let B(H) represent the set of linear bounded
operators onH, H(H) denoting the real subspace of Her-
mitian operators, withI, O being the identity and the zero
operator, respectively. In the standard statistical formulation
of quantum mechanics [7], [8], the dimension of the Hilbert
spaceH associated with the quantum system of interest,Q,
is determined by the physics of the problem. In what follows,
we considerfinite-dimensionalsystems, i.e. dim(H) < −∞.
Our (possibly uncertain) knowledge of the state ofQ is
condensed in adensity operatorρ, with ρ ≥ 0 and trace(ρ) =
1. Density operators form a convex setD(H) ⊂ H(H), with
one-dimensional projectors corresponding to extreme points
(pure states, ρ|ψ〉 = |ψ〉〈ψ|).
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If Q is the composite system obtained from two other
quantum systemsQ1, Q2, the corresponding mathemati-
cal description is carried out in the tensor product space,
H12 = H1 ⊗ H2 [7], observables and density operators
being associated with Hermitian and positive-semidefinite,
normalized operators onH12, respectively. Thepartial trace
overH2 is the unique linear operator trace2(·) : B(H12) →
B(H1), ensuring that for everyX1 ∈ B(H1), X2 ∈ B(H2),
trace2(X1 ⊗X2) = X1trace(X2).

In general, in the presence of internal couplings, quantum
measurements, or interaction with a surrounding environ-
ment, the evolution of a subsystem of interest is no longer
unitary and reversible, and the general formalism ofopen
quantum systemsis required [9], [2], [3]. A wide class of
open quantum systems obeys Markovian dynamics [2], [10],
[11]. Let I denote the physical quantum system of interest,
with associated Hilbert spaceHI , dim(HI) = d. Assume that
we have no access to the quantum environment surrounding
I, and that the dynamics inD(HI) is continuous in time,
the state change at eacht > 0 being described by a Trace-
Preserving, Completely-Positive (TPCP) mapTt(·) [12], [1].
A differential equation for the density operator ofI may be
derived provided that a forward composition law holds:

Definition 1 (QDS):A quantum dynamical semigroupis
a one-parameter family of TPCP maps{Tt(·), t ≥ 0} that
satisfies:
(i) T0 = I,
(ii) Tt ◦ Ts = Tt+s, ∀t, s > 0,
(iii) trace(Tt(ρ)X) is a continuous function oft, ∀ρ ∈

D(HI), ∀X ∈ B(HI).

Due to the trace and positivity preserving assumptions, a
QDS is a semigroup of contractions. It has been proved [10],
[13] that the Hille-Yoshida generator for a QDS exists and
can be cast in the following canonical form:

−i[H, ρ(t)] +
p

∑

k=1

γkD(Lk, ρ(t)) (1)

= −i[H, ρ(t)] +
p

∑

k=1

γk

(

Lkρ(t)L
†
k −

1

2
{L†

kLk, ρ(t)}
)

,

with {γk} denoting the spectrum ofA. Theeffective Hamil-
tonian H and theLindblad operatorsLk specify the net
effect of the Markovian environment on the dynamics. In
general,H is equal to the isolated system Hamiltonian,
H0, plus a correction,HL, induced by the coupling to the
environment (so-called Lamb shift). The non-Hamiltonian
termsD(Lk, ρ(t)) in (1) account for non-unitary dynamics
induced byLk.

In principle, the exact form of the generator of a QDS
may be rigorously derived from the underlying Hamiltonian
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model for the joint system-environment dynamics under
appropriate limiting conditions (the so-called “singularcou-
pling limit” or the “weak coupling limit,” respectively [2],
[3]). In most physical situations, however, carrying out such
a procedure is unfeasible, typically due to lack of complete
knowledge of the full microscopic Hamiltonian. A Marko-
vian generator of the form (1) is then usually assumed on
a phenomenological basis. In practice, it is often the case
that a direct knowledge of the noise effect may be assumed,
allowing to specify the Markovian generator by giving a
set of noise strengthsγk and Lindblad operatorsLk (not
necessarily orthogonal or complete) in (1). Each of the noise
operatorsLk may be thought of as corresponding to a distinct
noise channelD(Lk, ρ(t)), by which information irreversibly
leaks from the system to the environment.

II. QUANTUM SUBSYSTEMS

Quantum subsystems are the basic building block for
describing composite systems in quantum mechanics [7].
From both a conceptual and practical standpoint, renewed
interest toward characterizing quantum subsystems in a va-
riety of control-theoretic settings is motivated by Quantum
Information Processing (QIP) applications [1]. A definition
suitable to our scopes is the following:

Definition 2 (Quantum subsystem):A quantum subsystem
S of a systemI defined onHI is a quantum system whose
state space is a tensor factorHS of a subspaceHSF of HI ,

HI = HSF ⊕HR = (HS ⊗HF ) ⊕HR, (2)

for some factorHF and remainder spaceHR. The set
of linear operators onS, B(HS), is isomorphic to the
(associative) algebra onHI of the formXI = XS⊗IF⊕OR.

Let n = dim(HS), f = dim(HF ), r = dim(HR), and
let {|φSj 〉}nj=1, {|φFk 〉}

f
k=1, {|φRl 〉}rl=1 denote orthonormal

bases forHS , HF , HR, respectively. Decomposition (2) is
then naturally associated with the following basis forHI :

{|ϕm〉} = {|φSj 〉 ⊗ |φFk 〉}n,fj,k=1 ∪ {|φRl 〉}rl=1.

This basis induces a block structure for matrices acting on
HI :

X =

(

XSF XP

XQ XR

)

, (3)

where, in general,XSF 6= XS ⊗XF . Let ΠSF be the pro-
jection operator ontoHS⊗HF , that is,ΠSF =

(

ISF 0
)

.

A. Invariant subsystems

We start by investigating in which sense, and under which
conditions, a quantum subsystem may be defined as invariant.

Definition 3 (State initialization):The system I with
stateρ ∈ D(HI) is initialized inHS with stateρS ∈ D(HS)
if the blocks ofρ satisfy:
(i) ρSF = ρS ⊗ ρF for someρF ∈ D(HF );
(ii) ρP = 0, ρR = 0.

Condition (ii) in the above Definition guarantees thatρ̄S =
traceF (ΠSFρΠ

†
SF ) is a valid state ofS, while condition (i)

ensures that measurements or dynamics affecting the factor

HF have no effect on the state inHS . We shall denote by
IS(HI) the set of states initialized in this way.

Definition 4 (Invariance):Let I evolve under TPCP maps
Tt. S is an invariant subsystemif ∀ ρS ∈ D(HS), ρF ∈
D(HF ), the state ofI obeys

Tt
(

ρS ⊗ ρF 0
0 0

)

=

(

T S
t (ρS) ⊗ T F

t (ρF ) 0
0 0

)

, t ≥ 0,

(4)
where, for everyt ≥ 0, T S

t (·) and T F
t (·) are TPCP maps

on HS and HF , respectively, not depending on the initial
states.

Thus, a subsystem is invariant if time evolution preserves
the initialization of the state, that is, the dynamics is confined
within IS(HI). For Markovian evolution ofI, Definition 1
requires both{T S

t } and{T F
t } to be QDSs on their respective

domain.
We now provide two characterizations of dynamical mod-

els able to ensure invariance for a fixed subsystem – the
second explicitly constraining the block-structure of thema-
trix representation of the operators specifying the Markovian
generator.

Theorem 1 (Markovian invariance):HS supports an in-
variant subsystem under Markovian evolution onHI iff
∀ ρS ∈ D(HS), ρF ∈ D(HF ) the following conditions hold:

d

dt
ρ(t) =

(

LSF (ρS(t) ⊗ ρF (t)) 0
0 0

)

, ∀t ≥ 0, (5)

traceF [LSF (ρS(t) ⊗ ρF (t))] = LS(ρS(t)), ∀t ≥ 0, (6)

whereLSF andLS are QDS generators onHS ⊗ HF and
HS , respectively.

Corollary 1 (Markovian invariance):Assume thatHI =
(HS ⊗HF )⊕HR, and letH, {Lk} be the Hamiltonian and
the error generators of a Markovian QDS as in (1). ThenHS

supports an invariant subsystem iff∀ k:

Lk =

(

LS,k ⊗ LF,k LP,k
0 LR,k

)

,

iHP − 1

2

∑

k

(L†
S,k ⊗ L†

F,k)LP,k = 0, (7)

HSF = HS ⊗ IF + IS ⊗HF ,

where for eachk eitherLS,k = IS or LF,k = IF (or both).

B. Attractive subsystems

If we require a subsystem to have dynamics independent
from the rest also in the case it is not “perfectly initialized”
as in Definition 3, it turns out [6], [14] that an additional
contraint on the Lindblad operators is required. That is, it
must beLP,k = 0 for every k, which basically decouples
the evolution of theSF -block of the state from the rest.
However, this imposes tighter conditions on the noise opera-
tors, which may be demanding to ensure and, from a control
perspective, leave less room for Hamiltonian compensation
of the noise action (see Section III-A). In order to both
address situations where such extra constraints cannot be
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met, as well as a question which is interesting on its own,
we explore conditions for a subsystem to be attractive:

Definition 5 (Attractive Subsystem):Assume thatHI =
(HS⊗HF )⊕HR. ThenHS supports an attractive subsystem
with respect to a family{Tt}t≥0 of TPCP maps if∀ρ ∈
D(HI) the following condition is asymptotically obeyed:

lim
t→∞

(

Tt(ρ) −
(

ρ̄S(t) ⊗ ρ̄F (t) 0
0 0

))

= 0, (8)

where ρ̄S(t) = traceF [ΠSF Tt(ρ)Π†
SF ], ρ̄F (t) =

traceS [ΠSF Tt(ρ)Π†
SF ].

An attractive subsystem may be thought of as a subsystem
that “self-initializes” in the long-time limit, by somehow
reabsorbing initialization errors. Although such a desirable
behavior only emerges asymptotically, for QDSs one can see
that convergence is exponential, as long as some eigenvalues
of L have strictly negative real part. We begin with a negative
result which, in particular, shows how the initialization-free
and attractive characterizations are mutually exclusive.

Proposition 1: Assume HI = (HNS ⊗ HF ) ⊕ HR,
HR 6= 0, and letH, {Lk} be the Hamiltonian and the error
generators as in (1), respectively. LetHNS support a NS. If
LP,k = L†

Q,k = 0 for everyk, thenHNS is not attractive.

Remark: The conditions of the above Proposition are
obeyed, in particular, for NSs in the presence of purely
Hermitian noise operators, that is,Lk = L†

k, ∀k. As a con-
sequence, attractivity is never possible forunital Markovian
noise, as defined by the requirement of preserving the fully
mixed state. Still, even if the conditionLP,k = L†

Q,k =
0 condition holds, attractive subsystems may exist in the
pure-factor case, whereHR = 0. Sufficient conditions are
provided by the following:

Proposition 2: AssumeHI = HS ⊗ HF (HR = 0), and
let HS be invariant under a QDS, hence of the form

L = LS ⊗ IF + IS ⊗ LF .

If LF (·) has a unique attractive statêρF , then HS is
attractive.

Interesting linear-algebraic conditions for determining
whether a generatorLF (·) is has a unique attractive state,
but not necessarily pure, are presented in [15], [16]. Since
the main application for the present paper will bepure-state
stabilization problems, our main emphasis is on attractivity
in the subspace case.

Theorem 2 (Attractive Subspace):AssumeHI = HS ⊕
HR (HF = C), and letHS be an invariant subspace under
L. Assume that there exist a functionalV (ρ) ≥ 0 onD(HI),
continuous with continuous derivative, such thatV̇ (ρ) ≤ 0
in D(HI) \ IS(HI). Let

W = {ρ ∈ D(HI)| V̇ (ρ) = 0},
Z = {ρ ∈ D(HI)| trace[ΠRL(ρ)] = 0},

whereΠR is the orthogonal projector onHR. If W ∩ Z ⊆
IS(HI), thenHS is attractive.
Proof. ConsiderV1(ρ) = trace(ΠRρ) + trace(ΠRρ)V (ρ). It
is zero iff ρS = 0, i.e. for perfectly initialized states. By

computingL(ρ), we get;

trace[ΠRL(ρ)] = −trace
(

∑

k

L†
P,kLP,kρR

)

, (9)

that is always negative or zero. Hence

V̇1(ρ) = trace(ΠRL(ρ))(1 + V (ρ)) + trace(ΠRρ)V̇ (ρ) ≤ 0,

for everyD(HI), and it is zero only inW ∩ Z ∪ IS(HI).
If W ∩ Z ⊆ IS(HI), by applying Krasowskii-LaSalle
invariance theorem, we conclude.

The following result immediately follows:
Corollary 2: AssumeHI = HS⊕HR (HF = C), and let

HS support an invariant subspace underL. Assume that
∑

k

L†
P,kLP,k > 0, (10)

where> means strictly positive. ThenHS is attractive.
Proof. It suffices to note that (10) guarantees that (9) in
the proof of the Theorem above is zero iffρR = 0. The
conclusion follows by taking aV (ρ) constant and positive
on D(HI).

Remark:From considerations on the rank of the l.h.s. of
(10) and then × r dimension ofLP,k, the condition of
Corollary 2 may be obeyed only ifn ≥ r, i.e. dim(HS) ≥
dim(HR). An application of this result will be given in
Section III-A.

III. M ARKOVIAN FEEDBACK CONTROL

Building on pioneering work by Belavkin [17], it has been
long acknowledged for a diverse class of controlled quantum
system that intercepting and feeding back the information
leaking out of the system allow to better accomplish a
number of desired control tasks (see [18], [19], [20], [21],
[22], [23] for representative contributions). This requires the
ability to both effectively monitor the environment and condi-
tion the target evolution upon the measurement record. The
basic setting we consider is a measurement scheme which
mimicks optical homo-dyne detection for field-quadrature
measurements, whereby the target system (e.g. an atomic
cloud trapped in an optical cavity) is indirectly monitored
via measurements of the outgoing laser field quadrature [18],
[24]. The conditional dynamics od the state is stochastic,
driven by the fluctuation one observes in the measurement.
Considering a suitable feedback infinitesimal operator de-
termined by a feedback HamiltonianF , and taking the
expectation with respect to the noise trajectories, this leads to
the Wiseman-MilburnMarkovian Feedback Master equation
(FME) [18], [19]:

d

dt
ρt = F

(

H+
1

2
(FM+M †F ), ρt

)

+D(M−iF, ρt). (11)

In the following sections, we will tackle state-stabilization
and NS-synthesis problems for controlled Markovian dynam-
ics described by FMEs.
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A. Control assumptions

The feedback state-stabilization problem for Markovian
dynamics has been extensively studied for the single-qubit
case [25], [26]. In the existing literature, however, the stan-
dard approach to design a Markovian feedback strategy is to
assign both the measurement and feedback operatorsM,F,
and to treat the measurement strength and the feedback gain
as the relevant control parameters accordingly.

Throughout the following sections, we will pretend to have
more freedom, considering, for a fixed measurement operator
M , bothF andH as tunable control Hamiltonians.

Definition 6 (CHC): A controlled FME of the form (11)
supportscomplete Hamiltonian control(CHC) if (i) arbitrary
feedback HamiltoniansF ∈ H(HI) may be enacted; (ii)
arbitrary constantcontrol perturbationsHc ∈ H(HI) may
be added to the free HamiltonianH .

This leads to both new insights and constructive con-
trol protocols for systems where the noise operator is a
generalized angular momentum-type observable, for generic
finite-dimensional systems. Physically, the CHC assumption
must be carefully scrutinized on a case by case basis, since
constraints on the form of the Hamiltonian with respect to the
Lindblad operator may emerge, notably in so-called weak-
coupling limit derivations of Markovian models [2]. A first,
interesting consequence of assuming CHC emerges directly
from the following observation:

Lemma 1:The Markovian generator

d

dt
ρt = −i[H, ρt] +

∑

k

D(Lk, ρt) (12)

is equivalent to

d

dt
ρt = −i[H +Hcorr, ρt] +

∑

k

D(L̃k, ρt), (13)

where for allk:

L̃k = Lk + ckI, ck ∈ C, (14)

Hcorr = −i
∑

k

(c∗kLk − ckL
†
k). (15)

Note that for HermitianL and realc, Hcorr = 0. In general,
by exploiting CHC, we may vary the trace of the Lindblad
operators through transformations of the form (14), and, if
needed or useful, appropriately counteract the Hamiltonian
correctionHcorr with a constant control Hamiltonian. This
may allow to stabilize subsystems that were not invariant
for the uncontrolled equation,without directly modifying the
non-unitary part.

Example 1.Consider a generator of the form:

d

dt
ρ(t) = −i[σz, ρ(t)] +

(

Lρ(t)L† − 1

2
{L†L, ρ(t)}

)

,

where L = σz + σ+. Suppose that the task is to make
ρd = diag(1, 0) invariant. SinceHP = 0, LS = 1, Lp = 1,
invariance is not ensured by the uncontrolled dynamics.
Using the above result, it suffices to apply a constant
HamiltonianHcorr = −i(L − L†) = σy. The desired state
turns out to be also attractive, see Proposition 3 below.

B. Pure-state preparation with Markovian feedback:
Paradigmatic examples

Let us first consider a two-dimensional system. Our per-
spective differs from the one presented in [25] not only
because we mainly focus on continuous measurement of
Hermitian spin observablesbut, more importantly, because
we start from identifying what constraints must be imposed
to a two-dimensional Lindblad equation as in (1) for ensuring
that one of the system’s pure states is a stable attractor.
Without loss of generality, let such a state be written as
ρd = diag(1, 0), and write, accordingly,

Lk =

(

lk,S lk,P
lk,Q lk,R

)

, H =

(

hS hP
h∗P hR

)

.

As a straightforward application of the results of the
previous Section, we have the following.

Proposition 3: The pure stateρd = diag(1, 0) is a stable
attractor for a two-dimensional quantum system evolving
according to (1) iff:

ihP − 1

2

∑

k

l∗k,Slk,P = 0, (16)

lk,Q = 0, ∀k, (17)

and there exists āk such thatlk̄,P 6= 0.

We provide next a characterization of the stabilizable
manifold.

Proposition 4: Assume CHC. For any measurement op-
erator M , there exist a feedback HamiltonianF and a
Hamiltonian compensationHc able to stabilize an arbitrary
desired pure stateρd for the FME (11) iff

[ρd, (M +M †)] 6= 0. (18)
Proof.Consider as before a basis whereρd = diag(1, 0), and
let MH andMA denote the Hermitian and anti-Hermitian
part ofM , respectively. By (18),MH cannot be diagonal in
the chosen basis. In fact, assumeMH to be diagonal, then, by
Proposition 3,MS−F must be brought to diagonal form to
ensure invariance ofρd. Hence, by the same result it follows
thatρd cannot be made attractive. On the other hand, ifMH

is not diagonal, we can always find an appropriateF in order
to get an upper diagonalL = MH + i(MS −F ), andH ′ =
H + (FM + M †F )/2. To conclude, it suffices to devise a
compensation HamiltonianHc such that the conditioni(H ′+
Hc)P − 1

2 l
∗
SlP = 0 is satisfied.

The above proof naturally suggests a constructive algo-
rithm for designing the feedback and correction Hamiltonian
needed for stabilizing the intended pure state. From our
analysis, we also recover the results of [25] recalled before.
For example, the states that are never stabilizable within the
control assumptions of [25] are the ones commuting with
the Hermitian part ofM = σ+, that is,MH = σx. On the
xz plane in the Bloch’s representation, the latter correspond
precisely to the equatorial points. The following examples
serve to illustrate the basic ideas we shall extend to thed-
level case.
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Example 2: The simplest choice to obtain an attractive
generator is to engineer a dissipative part determined by

L = σ+ =

(

0 1
0 0

)

.

Let H = n0I2 +nxσx+nyσy +nzσz , with n0, nx, ny, nz ∈
R. Consider e.g.M = 1

2σx andF = − 1
2σy. Notice that in

this case1
2 (FM +M †F ) = 0, thusH ′ = H . Substituting in

the FME (11), one clearly obtain the desired result, provided
thatHc = −nxσx − nyσy.

Assume that it is possible to continuously monitor a single
observable, e.g.σx in the above example. Since the choice
of the reference frame for the spin axis is conventional, by
suitably adjusting the relative orientation of the measurement
apparatus and the sample, it is then in principle possible to
prepare and stabilize any desired pure state with the same
control strategy.

Example 3:Consider next a three-level system undergoing
continuous observation of a spin observable, for instance:

Jx =
~√
2





0 1 0
1 0 1
0 1 0



 .

Assume that our goal is to make the stateρd = diag(1, 0, 0)
attractive. In analogy with the above example, one is led to
consider the feedback Hamiltonian

F = −Jy = − ~√
2





0 −i 0
i 0 −i
0 i 0



 ,

thereby obtaining:

L =
~√
2





0 1 0
0 0 1
0 0 0



 .

In fact, if we defineD = diag(1, 0, 0) andV (ρ) = Tr(Dρ),
we get V̇ (ρ) = −

√
2ρ33. Therefore,V (ρ) is positive, has

negative semi-definite derivative, and the derivative is zero
in Z = {ρ|ρ33 = 0}. By invoking Theorem 2,V = {ρ|ρ22 =
0}, the two sets are disjoint besideρd itself, hence the state
is attractive. Notice that this also provides an example of an
attractive state, which doesnotsatisfy the sufficient condition
of Corollary 2 (in fact, Corollary 2 is interesting for state
stabilization only with two-dimensional systems [6]).

The previous examples naturally extend to genericd-level
systems, provided that similar structure of the observableis
ensured. Let the pure state to be FME-stabilized be written
asρd = diag(1, 0, . . . , 0).

Proposition 5: Assume thatH is diagonal. The pure state
ρd is a stable attractor for the FME (11) conditioned over
the continuous measurement of the operator:

M =
1

2



















0 m1 0 · · · 0

m1 0
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . md−1

0 · · · 0 md−1 0



















,

and a Markovian feedback Hamiltonian:

F = − i

2



















0 m1 0 · · · 0

−m1 0
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . md−1

0 · · · 0 −md−1 0



















,

with mi 6= 0, for i = 1, . . . , (d− 1).

By contruction,F andM play a role analogous to theσy
andσx observables of thed = 2 case. Notice that their form
is not different from that of standard, higher-dimensionalspin
observables. The main advantage of Markovian feedback
techniques with respect to other design strategies, based
on estimation of the underlying quantum state (so-called
Bayesian techniques), is the simplicity of adirect output-
feedback loop– as opposed to the task of integrating ad2-
dimensional stochastic master equation in real time, which
becomes rapidly prohibiting asd grows. On the other hand,
direct feedback requires strong control capabilities and per-
fect detection. The parameters one has to accurately tune are
the feedback and measurement operators, along with both the
system Hamiltonian and its control perturbation, if needed.
Also notice that Bayesian feedback-stabilization problems
usually aim at stabilizing a pure state that commutes with
a Hermitian observable, namely one of its eigenstates. This,
in the light of Proposition 4, would not be possible with
Markovian feedback. In the Markovian approach, however,
it is substantially simpler to stabilize states that are not
equilibrium points for the uncontrolled dynamics.

C. Imperfect detection case: Perturbative analysis

From an experimental viewpoint, the perfect detection
assumption may seriously constrain the applicability of the
analysis and synthesis techniques developed so far. Never-
theless, for state stabilization problems, one may assess the
role of the perfect-detection hypothesis and the possibility to
relax it. If η < 1, the FME is modified as follows [24]:

d

dt
ρt = F

(

H + 1/2(FM +M †F ), ρt

)

+ +D(M − iF, ρt) + εD(F, ρt), (19)

where we definedε = (1 − η)/η.
In [2], generators of the form (1) are rewritten in a

convenient way by choosing a suitable Hermitian basis
in B(Hi) ≈ Cd×d 1. In such a basis, all density op-
erators are represented byd2-dimensional vectors̄ρ =
(ρ0, ρ1, . . . , ρd2−1)

T , where the first componentρ0, relative
to 1√

d
Id, is invariant and equal to1√

d
for TP-dynamics. Let

ρv = (ρ1, . . . , ρd2−1)
T . Hence, any QDS generatorL(ρ)

must take the form:
d

dt
ρ = L(ρ) =

(

0 0
C D

) (

1/
√
d

ρv

)

. (20)

1In fact, endowingCd×d with the inner product〈X, Y 〉 := trace(X†Y )
(Hilbert-Schmidt), we may use a basis where the first elementis 1√

d
Id,

and complete it with a orthonormal set of Hermitian, traceless operators.
This can always be done for finited, for example by employing the natural
d-dimensional extension of the Pauli matrices [2], [27].
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Assume that the dynamics has a unique attractive stateρ̄(0).
ThusD must be invertible and we get:

ρ̄(0) =
1√
d

(

1
−D−1C

)

.

Consider now a small perturbation of the generator de-
pending on the continuous parameterε, with 1− δ < η < 1,
andδ sufficiently small so that(D+εD′) remains invertible.
The generator becomes:

d

dt
ρ = L(ρ) =

[(

0 0
C D

)

+ ε

(

0 0
C′ D′

)](

1/
√
d

ρv

)

,

(21)
and the new attractive, unique equilibrium state is:

ρ̄(ε) =
1√
d

(

1
−(D + εD′)−1(C + εC′)

)

.

Being ρ̄(ε) a continuous function ofε, we are guaranteed
that for a sufficiently high detection efficiency the stable
attractor will be arbitrarily close to the desired one in trace
norm. Therefore, if we relax our control task to a state
preparation problem with sufficiently high fidelity, this may
be accomplished with a sufficiently high detection efficiency,
yet strictly less than 1.

IV. CONCLUSION

We have revisited some fundamental concepts on Marko-
vian dynamics for quantum systems and reformulated the
notion of a general quantum subsystem inlinear-algebraic
terms. A complete characterization of invariant subsystems
for Markovian quantum dynamical systems has been pro-
vided. When imperfect subsystem initialization is considered,
the conditions to be imposed on the Markovian genera-
tor become more demanding, motivating the new notion
of asymptotically stableattractive subsystem. The linear-
algebraic approach we adopted, along with Lyapunov’s
stability techniques, provided us with explicit stabilization
results that have been illustrated in simple yet paradigmatic
examples.

In the second part of the work, the conditions identified
for subsystem invariance and attractivity serve as the starting
point for designing output-feedback Markovian strategies
able to actively achieve the intended quantum stabiliza-
tion. We have completely characterized the state-stabilization
problem for two-level systems. While the analysis assumes
perfect detection efficiency, a perturbative arguments indi-
cates how unique attractive states depend in a continuous
fashion on the model parameters.

Further work is needed in order to establish entirely
general Markovian feedback stabilization results, including
finite bandwidth and detection efficiency, as well as simulta-
neous monitoring of multiple observables. Among the most
interesting perspectives, additional investigation is required
to establish the full power of Hamiltonian control and
Markovian feedback in synthesizing NS structures. This may
point to new venues for producing protected realizations of
quantum information for physical systems whose dynamics
is described by quantum Markovian semigroups.
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