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Abstract
An analysis of dispersive/dissipative features of the

difference schemes is developed based on particular
asymptotic and exact travelling wave solutions of the
differential approximation (DA) of the equation under
study. It is shown on the example of the non-linear
Burgers’ equation, that its asymptotic travelling wave
solution allows us to describe deviations in the shock
wave caused by a scheme dispersion/dissipation. These
analytical predictions may be used to diminish bad de-
viations by suitable choice of the parameters of the
scheme. Then it is shown, that exact travelling wave
solution of the DA for the non-linear Burgers’ equation
helps us to suggest artificial non-linear additions to the
schemes to suppress the influence of the scheme dis-
persion and/or dissipation. Application of the analyti-
cal solutions is demonstrated using the Lax-Wendroff
scheme.
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1 Introduction
A discrete model described by a scheme often pos-

sesses internal dispersive and/or dissipative properties
caused by a method of discretization. It gives rise to
non-physical deviations in the numerical solution. One
can decrease the influence of these bad factors by vary-
ing time and space steps and modifying the method of
approximation. A possibility to know how to do it is the
application of the method of differential approximation
(DA) [Lerat and Peyret, 1975; Shokin, 1983; Mukhin
et al, 1983; Fletcher, 1991]. This method allows us to
study dispersive and dissipative features of a scheme by
an analysis of thedifferentialequation called a differen-
tial approximation (DA). It is obtained using a substitu-
tion of the Taylor expansions of the discrete functions
into a differencescheme. An analysis of the resulting

partial differential equation (PDE) is possible if the ex-
pansion is truncated at some order. However, the DA
for a dicretization of anon-linearequation is also non-
linear and nonitegrable equation. Then, onlyparticular
analytical travelling wave solutions existing at specific
initial conditions may be obtained. A natural question
arises: may the particular asymptotic and exact solu-
tions be used to analyze the features of the DA, thus
the features of difference schemes?
In this paper, we demonstrate the efficiency of the use

of analytical solutions for understanding the deviations
in the shock caused by the scheme features on an ex-
ample of the non-linear Burgers’ equation,

vt + (v2)x − b vxx = 0. (1)

In general, its DA may be written as [Lerat and Peyret,
1975; Shokin, 1983; Engelberg, 1999]

ut+(u2)x−b uxx = −s(u) uxxx+α(u, ux)−q(u) uxxxx,
(2)

In particular, we obtain for the Lax-Wendroff (LW)
scheme [Lerat and Peyret, 1975; Shokin, 1983;
Fletcher, 1991]

ut + (u2)x − buxx =
4t2

24
(u4)xxx − 4x2

12
(u2)xxx,

(3)
One can try to find an exact travelling wave solution of
Eq.(3). Another way is to consider the r.h.s. of it as a
small perturbation and find an asymptotic solution. In
this last case it was suggested in [Mukhin et al, 1983]
to linearize the r.h.s. around a constant, say, the value
of u−∞ = u(x → −∞). Then Eq.(3) is simplified
towards the linearly perturbed Burgers equation,

ut +u ux −buxx = −
(4x2 −4t2u2

−∞
)
u−∞

6
uxxx,

(4)
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Figure 1. Influence of the weak dispersion on the Burgers shock

wave solution described by the asymptotic solution (9)

where the r.h.s. accounts for the linear scheme disper-
sion. Similar equations may be written for the DA of
another schemes with dispersion, and with dissipative
features.
We suggest two kinds of the analysis of the DA. The

first one is to obtain a travelling wave asymptotic so-
lution. It accounts for the deviations in the shock pro-
file of the solution of the Burgers equation caused by
the scheme dispersion. The analytical relationship is
obtained to find how these deviations depend on the
temporal and spatial steps of the scheme. The devi-
ations in the shock caused by the scheme dispersion
may be diminished but not suppressed by variations in
the space and time step according to the asymptotic so-
lution. Then the exact solutions are employed to find
the conditions where the smooth profile is achieved as
a result of the compensation of dispersion by artificial
additional nonlinear modification of the scheme.All an-
alytical finding are confirmed by numerical simulations
of the Burgers equation using the classic Lax-Wendroff
scheme and this scheme modified by adding the artifi-
cial nonlinearity prescribed by the exact solution.

2 Use of asymptotic solution
Let us recall that the Burgers equation,

ut + (u2)x − b uxx = 0, (5)

possesses the shock-wave solution (or a kink), see,e.g.,
[Whitham, 1974],

u0 =
1
2

(2 b p tanh(p(X − V t)) + V ) . (6)

wherep and V are free parameters to be defined by
the boundary conditions, i.e., for given values ofu at
infinities. For simplicity we assumeu∞ = 0. Then
we have

V = u−∞, p = − u−∞/(2b). (7)
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Figure 2. Numerical simulation of a shock wave described by Eq.

(1) using the LW scheme. Shown by dashed line is the Burgers’ kink.

The solution has familiar shape of the smooth shock
wave. However, presence of dispersion in the LW
scheme results in parasitic oscillations in the shape of
the shock wave. To describe an influence of disper-
sion, a travelling wave asymptotic solution to Eq. (4) is
sought in the form

u(θ) = u0(θ) + δu1(θ) + ... (8)

whereθ = x − V t, andu1 → 0 at θ → ±∞. Sub-
stituting this series into Eq.(4) we obtain the Burgers
shock (6) in the leading order, while the first correction
is obtained by solving the linear inhomogeneous equa-
tion for u1. As a result the first two terms in (8) give
rise to the solution

u =
1
2

(2 b p tanh(p(X − V t)) + V ) +

p2
(4x2 −4t2u2

−∞
)
u−∞

6
cosh(pθ)−2 log(cosh(p θ))

(9)
One can see in Fig. 1 a non-symmetric influence on the
upper and lower parts of the shock due to the addition to
the Burgers kink in the solution (9). A ”hat” or a bump
appears at the upper part of the shock while the lower
one exhibits a smoother profile. The sign of the dis-
persion coefficient in Eq.(4) cannot be changed with-
out exceeding the stability criteriumu−∞4t < 4x.
According to the asymptotic solution disturbances will
be weaker for higher temporal step since the disper-
sion coefficient decreases with increase in4t. Numer-
ical simulations of the Burgers equation using the LW
scheme is shown in Fig. 2. The initial condition is cho-
sen in the form of the shock with the slope differing
from that of the Burgers shock (6)), shown by dashed
line. As time goes, numerical solution demonstrates
transformation to the shock with the slope coinciding
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Figure 3. Variations of minimum and maximum of the shock vs

temporal step for the LW scheme:umax − 2 varies between up-

per solid line and dotted line, while lower solid line corresponds to

umin.

with that of (6)) since no dashed lines are visible at
all four stages shown in Fig. 2 against a background
of the numerical solution. Also the bump develops at
the upper side of the wave front in the agreement with
the asymptotic solutions, c.f. Fig. 1. The increase in
the values of the space and time steps done following
the solution (9) provides a decrease in the height of the
bump, see Fig. 3, but not the full disappearance of the
bump. Note that the prediction remains valid even for
the moderate values ofu−∞ − u∞ = 2 chosen out-
side a formal applicability of the linearized equation
(4), |u− u−∞| << 1.

3 Use of exact solutions
The shock wave of the Burgers equation arises as a

result of a balance between nonlinearity and dissipa-
tion described by the second and the third terms in
Eq.(5) respectively. The balance between nonlinearity
and dissipation may be destroyed or perturbed by the
presence of dispersion. It does not refuse existence of
an exact travelling wave solution. In particular, Eq.(4)
often called the Korteweg-de Vries-Burgers (KdVB)
equation, possesses well known exact kink-shaped so-
lution

u = B sech2(p(x− V t)) + F tanh(p(x− V t)) + C.
(10)

whose shape is close to that of the Burgers shock wave
(6). However, it does not contain free parameters, all
of them are defined by the coefficients of the KdVB
equation,

B = 6p2 s, F = − 6b p

5
, C = ± 3b2

25s
, p = ∓ b

10s
,

V = ± 6b2

25s
, s =

(4x2 −4t2u2
−∞

)
u−∞

6

As a result, boundary conditions cannot be satisfied for
anyu−∞, and the velocity of the wave differs from that
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Figure 4. Temporal evolution of an initial smooth kink-shaped pro-

file for the LW scheme with artificial nonlinear term. Shown by

dashed line is the Burgers’ kink.

of the Burgers shock wave (6). It does not mean that the
DA cannot predict the deviations in profile- it means
that not anyparticular exact solution may account for
it. Also it is described by theasymptoticsolution of
the DA in the last section. The problem is to find the
improvement of the scheme providing absence of the
bump shown in Fig. 2.
One possibility is to add artificial term in the DA (10).

It was suggested in [Mukhin et al, 1983] to add artificial
terms in the scheme to suppress numerical dispersion.
It was found that addition of the terms produced by DA
(e.g., r.h.s. of (3) with opposite sign coefficients does
not solve the problem due to the influence of the higher-
order terms omitted in the truncated expansions (3).
We suggest to add nonlinear term to balance the influ-

ence of dispersion and to employ exact solutions to find
suitable nonlinear additions providing an exact solution
with the shape and velocity close as much as possible to
those of the kink solution of the Burgers equation. For
this purpose, an additional non-linear term is suggested
to add to Eq. (4),

ut + u2
x − b uxx + s uxxx + γ u2

xx = 0, (11)

Exact solution of Eq.(11) is sought using the method of
ansatz. It turns out that the last equation possesses the
exact kink-shaped solution in the form (6) provided that
the velocityV is defined by the boundary conditions as
in Eq. (7) and

γ = − s

b + 2p s
, p =

−b±
√

b2 + 4s u−∞
4s

, (12)

Therefore, the slope of the last solution differs from
that of the Burgers kink while velocity is the same. We
are able to define suitable value ofγ through the pa-
rameters of the scheme, and it disappears as the tem-
poral and spatial steps tend to zero, i.e., in the contin-
uum limit. The last means that we still model the Burg-
ers equation even if we add in the discrete LW scheme



the central difference representation of the termγ u2
xx

choosing the coefficientγ according to Eq. (12). Nu-
merical simulations are shown in Fig. 4 where the ini-
tial profile is chosen the same as in Fig. 2. One can see
the suppression of the bump (c.f. Fig. 2) while the slope
of the wave coincides with that of the Burgers’ kink
since again the dashed line representing exact travelling
wave solution (6) is not visible against a background of
the numerical solution. One can note that deviations in
the value of the artificial term coefficient from that of
Eq. (12) result either in an appearance of a bump or in
an instability of the scheme.

4 Conclusions
The main result of the paper is that particular analyti-

cal solutions of the differential approximation of a nu-
merical scheme for the Burgers’ equation predict shock
profiles arising in its numerical study. The solutions
provide us with the explicit relationships between the
parameters of the scheme and the coefficients in the
equation responsible for the scheme dispersion. It al-
lows us to choose these parameters so as to avoid one
or another perturbation of the numerical shock pro-
file. We are able to predict deviations in the shock in
dependence of the value of the steps of a numerical
scheme. Therefore, the scheme deviations of the nu-
merical shock may be diminished by choosing suitable
values according to our asymptotic analysis. Also we
manage to compensate the influence of dispersion by
adding artificial nonlinear term. It is exact travelling
wave solution that helps us to choose suitable term to
avoid unreasonable perturbations on the shock profile.
The presentation here is restricted to the LW scheme

with dispersion. The same analysis may be done not
only for other schemes with dispersion (Mac-Cormack,
Warming-Beam) but for the schemes with dissipative
features (3d order LW scheme) also. These results may
be found in our paper [Porubov et al, 2008].
The non-linear Burgers’ equation is chosen to demon-

strate the efficiency of our approach excluding huge an-
alytical solutions. The applicability of the method to
more complicated equations, e.g., gas-dynamics equa-
tions will be the topic of future work.
A more rigorous mathematical justification of the

method is improbable since the differential approxi-
mations belong to the class of so-called non-integrable
equations.
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Recherche Áerospatiale, No2 61–79.

S. Engelberg (1999) An analytical proof of the lin-
ear stability of the viscous shock profile of Burgers’
equation with a fourth order viscosity,SIAM J. Math.
Anal., 30927–936.

G.B. Whitham (1974)Linear and Nonlinear Waves,
Wiley, New York.

C.A.J. Fletcher (1991)Computational Techniques for
Fluid Dynamics 2. Specific Techniques for different
flow categories, Springer, Berlin.


