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Abstract
In this paper a non-stationary processes that tend to

maximize the Tsallis entropy are considered. Systems
with discrete probability distribution for the Tsallis en-
tropy have already been investigated on the basis of the
Speed-Gradient principle. The evolution of probability
density function and continuous form of the Tsallis en-
tropy are considered. A set of equations describing dy-
namics of a system under the mass conservation and the
energy conservation constraints is derived. The unique-
ness of the limit distribution and asymptotic conver-
gence of probability density function is examined for
both constraints.
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1 Introduction
Entropy is actively used by many fields of science in-

cluding physics, chemistry, computer science, biology
etc. [Martyushev and Seleznev, 2006]
Today there are many different types of entropy in use

which often becomes the center of discussions both in
statistical physics and thermodynamics. The most fa-
mous is the Shannon entropy [Shannon, 1948]:

H(X) = −
∑
i

P (xi) logP (xi), (1)

where X is a discrete random variable with possible
values {x1, ..., xn} and P is a probability mass func-
tion.
In 1988, Constantino Tsallis [Tsallis, 1988] intro-

duced a generalized Shannon entropy.

H(X, q) =
1

q − 1

(
1−

∑
i

P (xi)
q

)
, (2)

where q is any real number. It was shown that the Tsal-
lis entropy tends to the Shannon entropy when q → 1.
Extension of the Tsallis entropy for continuous case

can be defined as

S(X, q) =
1

q − 1

(
1−

∫
pq(x)dx

)
, (3)

where X is an absolutely continuous random variable
having probability density function (PDF) p.
The Tsallis entropy has become very popular in statis-

tical mechanics and thermodynamics nowadays. It has
also found many applications in various scientific fields
such as chemistry, biology, medicine, economics, geo-
physics, etc. There is a plenty of works that use and
analyze the Tsallis entropy [Tsallis, 2016].
A variety of physical systems obey the famous

maximum entropy (MaxEnt) principle: their entropy
achieves maximum under constraints caused by other
physical laws. Since 1957, when seminal works of
E.T.Jaynes were published [Jaynes, 1957], and un-
til now [Martyushev, 2013] the MaxEnt principle has
whetted a lively interest of researchers.
Although the states of maximum entropy are widely

discussed in scientific articles and studies, the dynam-
ics of evolution and transient behavior of systems are
still not well investigated.
In this paper, we propose a set of equations that de-

scribe the dynamics of PDFs for non-stationary pro-
cesses that follow the maximum of the Tsallis entropy
principle.
The speed-gradient (SG) principle [Fradkov, 2008;

Fradkov, Miroshnik and Nikiforov, 1999; Fradkov,
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2005; Fradkov, 1979] used here is originated from the
control theory. This principle has been already applied
in [Fradkov, 2007; Fradkov, 2008] to derive the equa-
tions of dynamics for the systems with a finite num-
ber of particles for the case of maximum Shannon en-
tropy principle. The dynamics of discrete systems for
the Tsallis entropy is discussed in [Fradkov and Shaly-
mov, 2015]. Rényi entropy is investigated from the SG-
principle perspective in [Shalymov and Fradkov, 2016].
Continuous probability distributions are considered in
[Fradkov and Shalymov, 2015].
We use a similar approach proposed in [Fradkov,

2008; Fradkov and Shalymov, 2015; Fradkov and Sha-
lymov, 2015; Shalymov and Fradkov, 2016] for contin-
uous form of the Tsallis entropy. The derived equa-
tions describe the dynamics of non-stationary (tran-
sient) states and show the way and trajectory of a sys-
tem tending to the state with maximum of the Tsallis
entropy.
The well-known Fokker-Planck (FP) equations

[Frank, 2005] describe the time evolution of PDF.
Jaynes’s MaxEnt approach can also be applied to these
equations, see [Hick and Stevens, 1987]. Another
general form of time-evolution equations for non-
equilibrium systems is known as GENERIC (general
equation for the non-equilibrium reversible-irreversible
coupling) [Grmela and Öttinger, 1997]. The relation
between GENERIC and FP equations is established
in [Grmela and Öttinger, 1997]. It states that FP is
a particular case of GENERIC when a noise term is
added into the GENERIC. Thus, if the FP equation
is represented as a stochastic differential equation,
from which fluctuations are eliminated, this equation
matches the GENERIC equation [Öttinger, 1998].
Following this, we can also claim that the SG-

principle matches GENERIC (and thus it matches FP)
if a goal function is set as entropy and constraints are
specified by energy [Fradkov and Shalymov, 2015].
Moreover, the SG-principle is a more general case of
GENERIC because almost every smooth function can
be taken as a goal function, not only entropy.
We propose evolution law of the system in the follow-

ing general form:

Ṗ (t) = Γ
q

q − 1
(I −Ψ)P (t)

q−1
, (4)

where I is an identity operator, Ψ is a linear integral
operator that does not depend on p, Γ > 0 is a constant
gain. All the solutions of the equation (4) converge to
the distribution that corresponds to the maximum value
of the Tsallis entropy.
Along with the Tsallis entropy more general forms

of relative entropies and divergences such as CR en-
tropy or Csiszár–Morimoto conditional entropies (f-
divergencies) [Morimoto, 1963] can also be considered
from the SG-principle perspective.
The main goal of this paper is extension of results

described in the [Fradkov, 2008; Fradkov and Shaly-

mov, 2015; Fradkov and Shalymov, 2015; Shalymov
and Fradkov, 2016] to the continuous form of the Tsal-
lis entropy. The SG principle is used to derive equa-
tions of the dynamics of transient states of the systems
that follow the MaxEnt principle in a steady state.

2 The Speed-Gradient Principle
There is a connection between the laws of control in

technical systems and laws of the dynamics in physical
systems. It is known that the methods for synthesis of
control algorithms allow to derive the laws of dynamics
for physical systems. In particular, the model of the dy-
namics for a number of physical systems can be derived
based on the SG-method with an appropriate choice of
the goal function.
Consider the class of open physical systems which dy-

namics can be described by the system of differential
equations

ẋ = f(x, u, t), (5)

where x ∈ Cn is the system state vector, u is the vec-
tor of input (free) variables, t ≥ 0. The problem of
system modeling can be formulated as finding the law
of change (evolution) u(t) which meets a certain crite-
ria of “naturalness” for its behavior and grants a set of
properties observed in real physical systems to a gener-
ated model.
Such formulations are well known in physics. Varia-

tional principles of systems models has long been rec-
ognized. They usually involve the task of an inte-
gral functional that characterizes the behavior of the
system [Lanczos, 1962]. Minimization of the func-
tional defines the real possible trajectories of the sys-
tem {x(t), u(t)} as points in the corresponding func-
tional space. To explicitly specify the dynamics of the
system a developed apparatus of the variations calculus
is used.
Variational approach formed the basis of the whole di-

rection in the control theory - the theory of optimal con-
trol, where minimization of functional is used to find an
appropriate control law for a given system.
Methods of optimal control (e.g. Bellman dynamic

programming, Pontryagin maximum principle etc.) are
the result of development of classical variational cal-
culus methods. Such optimal control methods can be
used to build dynamic models of mechanical systems
in nature and society.
Together with integral principles a differential local

time principles have also been proposed such as Gauss
principle of least constraint, the principle of minimum
energy dissipation etc. As noted by M. Planck [Planck,
1909], local principles have some advantages over in-
tegral ones, because they do not make the current state
and the movement of the system to be dependent on
its later states and movements. Let us formulate an-
other local variational principle based on the method
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of speed-gradient [Fradkov, Miroshnik and Nikiforov,
1999; Fradkov, 2007]:
The speed-gradient principle: only those possible

movements of the system are realized (among all pos-
sible movements) for which the input variables change
proportionally to the speed-gradient of a “goal” func-
tional.
The speed-gradient principle offers to researcher the

choice of two types of systems dynamics models:
A) models which follow the algorithm of the speed-

gradient in differential form:

u̇ = −Γ∇uQ̇t. (6)

B) models following the algorithm of the speed-
gradient in finite form:

u = −Γ∇uQ̇t. (7)

where Q̇t is the rate of change of the target functional
along the trajectories of the system (5). We describe
the application of the SG-principle in the simplest (and
most important) case when the class of models of dy-
namics is given by the relation:

ẋ = u. (8)

Relation (8) means only that we are looking for a law
of variation rates of the state variables of the system.
In accordance with the SG-principle the goal func-

tional Q(x) has to be determined first. Selection of
Q(x) should be based on the physics of the real sys-
tem and reflect the presence of a tendency to decrease
the current value of Q(x(t)). After that, the law of dy-
namics can be written in the form (6) or (7).
The use of a law of dynamics in the form (6) gener-

ates differential equations of motion of the second or-
der. These equations are invariant with respect to the
replacement of time t by (−t). It corresponds to re-
versible processes. On the contrary, the choice of the
final form (7) corresponds to irreversible processes in
general.

3 Jaynes Maximum Entropy Principle
The approach proposed by Jaynes [Jaynes, 1957] be-

came the foundation for statistical physics nowadays.
Its main ideas are described below.
Let p(x) be a PDF of a multidimensional random vari-

able x. This is an unknown function that needs to be
defined on the basis of certain system information. Let
us suppose that there is the information about some av-
erage values Hm which are known a priori:

Hm =

∫
Hm(x)p(x)dx, m = 1, ...,M. (9)

The next equality is also true for the density function

∫
p(x)dx = 1. (10)

Conditions (9) and (10) in general can be insufficient
to derive p(x). In this case, according to Jaynes, ap-
plying maximization of information entropy SI is the
most objective method to define the density function.

SI = −
∫

p(x) log p(x)dx.

Maximum search with additional conditions (9) and
(10) is performed by using Lagrange multipliers; it
leads to

p(x) =
1

Z
exp

(
−

M∑
m=1

λmHm

)
, (11)

Z =

∫
exp

(
−

M∑
m=1

λmHm

)
dx, (12)

where λm can be derived from conditions (9).
In case of equilibrium these formulas show that

the maximum information entropy coincides with the
Boltzmann-Gibbs entropy and can be identified with
the thermodynamic entropy.

4 The Speed-Gradient Dynamics of the Continu-
ous Tsallis Entropy Maximization Process

Consider a system with a continuous distribution of
possible states that evolves on a compact carrier. Dis-
tribution over states is characterized by PDF p(t, x)
which is continuous everywhere except of a set with
zero measure. It is true that

∫
Ω

p(t, x)dx = 1, ∀t (13)

where Ω is a compact carrier.
The Tsallis entropy for continuous PDF is defined as

S(X, q) =
1

q − 1

(
1−

∫
Ω

pq(t, x)dx

)
, (14)

where q is any real number.
From the constraint (13) it follows that

∫
Ω

u(t, x)dx = 0, (15)



62 CYBERNETICS AND PHYSICS, VOL. 5, NO. 2

where u(t, x) = ṗ(t, x).

According to the SG-principle we calculate Ṡ :

Ṡ(X, q) =
q

1− q

∫
Ω

pq−1(t, x)ṗ(t, x)dx

Gradient of Ṡ by u is equal to

∇uṠ(X, q) =
q

1− q
∇u⟨pq−1(t, x), u⟩ = q

1− q
pq−1(t, x)

(16)
Speed-gradient principle of motion forms the evolu-

tion law:

u = −Γ
q

1− q
pq−1(t, x) + λ′

where Γ can be taken as a scalar value and Lagrange
multiplier λ′ is selected to satisfy the constraint (15).

∫
Ω

(
−Γ

q

1− q
pq−1(t, x) + λ′

)
dx = 0 ⇒

λ′ =
qΓ

(1− q)mes(Ω)

∫
Ω

pq−1(t, x), (17)

where

mes(Ω) =

∫
Ω

1dΩ. (18)

Final system dynamics equation has the following
form

ṗ = −Γ
q

1− q
pq−1(t, x)+

qΓ

(1− q)mes(Ω)

∫
Ω

pq−1(t, x)

(19)
Eq. (19) can be represented in the more general form

ṗ = Γ
q

q − 1
(I −Ψ)pq−1, (20)

where Ψ =
∫
Ω
(·)dx

mes(Ω) is a linear operator which is invari-
ant for p and I is an identity operator.

4.1 Equilibrium stability
Let us investigate a stability of obtained equilibrium

equation (19). Consider function V (p) = Smax −
S(X, q) ≥ 0. Derivative of this function is

V̇ (p) = −Ṡ(X, q) = − q

1− q

∫
Ω

u(t, x)pq−1(t, x)dx

(21)

After substitution of expression for u from (19) to (21)
we obtain:

V̇ (p) =
Γq2

mes(Ω)(q − 1)2
×

×

((∫
Ω

pq−1(t, x)dx

)2

−mes(Ω)

∫
Ω

(
pq−1(t, x)

)2
dx

)
(22)

Then we use the CBS inequality in integral form

∣∣∣∣∫
Ω

f(x)g(x)dx

∣∣∣∣2 ≤
(∫

Ω

|f(x)|2
)(∫

Ω

|g(x)|2
)
(23)

for functions f = pq−1 and g = 1. Taking into account
that a scalar value Γ is positive we get that V̇ (p) ≤ 0. It
is known that equality in the CBS inequality is achieved
when multiplicity occurs, i.e. f(x) = αg(x). In our
case V̇ (p) = 0 is true when pq−1 = α. It is possible
only when p(t, x) = C = const. Using the constraint
(13) we get that C = mes−1(Ω). It means that there
is the only one unique limit PDF p∗ = mes−1(Ω) for
equilibrium state of the system which evolves by evo-
lution law (19).

4.2 Asymptotic convergence
To show an asymptotic convergence of all solutions to
p∗ we use the Barbalat’s lemma.

Theorem 4.1 (Barbalat’s lemma). If differentiable
function f(t) has a finite limit for t → ∞ and its
derivative ḟ(t) is uniformly continuous then ḟ(t) → 0
for t → 0.

Theorem 4.2. For all PDFs defined by equation (19)
it is true that p(t, x) → p∗ for t → ∞.

Proof. For the sake of simplicity we define a notation
for V in (22) as v(t) = V (p(t)) . We will use Bar-
balat’s lemma to show that v̇(t) → 0. We use v(t)
as a function f(t) in Barbalat’s lemma. Because of
v(t) ≥ 0 and v̇ ≤ 0 the function v(t) has a finite limit
for t → ∞.
It can be shown that v̇ is uniformly continuous. Con-

sider expression for |v̈(t)|.

v̈(t) =

q2

1− q

∫
Ω

u(t, x)pq−1(t, x)dx

∫
Ω

pq−1(t, x)u(t, x)dx+

q

q − 1

∫
Ω

u̇(t, x)pq−1(t, x)dx+

q

q − 1

∫
Ω

(q − 1)u2(t, x)pq−2(t, x)dx (24)

Due to the constraint (13) and compactness of the car-
rier Ω it can be shown that function |v̈(t)| is bounded.
That lead us to the fact that v̇ is uniformly continuous.
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As all necessary conditions of the Barbalat’s lemma
for differentiable function v(t) are satisfied, we have
that v̇(t) → 0 for t → 0.
Taking into account that

∫
Ω
fdx = (1, f) and∫

Ω
f2dx = ∥f∥2 the expression for v̇ from (22) may

be rewritten as

v̇ = − Γq2

mes(Ω)(q − 1)2

(
1− (1, pq−1)2

mes(Ω)∥pq−1∥2

)
=

= − Γq2

mes(Ω)(q − 1)2
∥pq−1∥2

(
1− cos2(α(t))

)
,

(25)

where α(t) = cos(⟨1, pq−1⟩).
If ∥pq−1∥2 → 0 then mest{r : pt(r) ̸= 0} → 0.

But this case conflicts with the constraint (13). Given
(25) we obtain that α(t) → 0. It means that p̂q−1 → 1̂,
where p̂q−1 and 1̂ are normalized values for pq−1 and
1 respectively.
It follows that p(t, x) tends to the stationary distribu-

tion. As explained earlier this distribution is unique.
Thus, pt → p∗ for t → ∞.

5 Total Energy Constraint
The constraint (13) can be interpreted as the mass con-

servation law on the space Ω. Consider a system with
additional constraint for the total energy conservation,
i.e. a conservative case when energy does not depend
on a time. The new constraint may be described as

∫
Ω

p(t, x)h(x)dx = E, (26)

where E is a common energy of a system and h(x) is a
density of energy.
Equation of dynamics can be defined in the form

u = −Γ∇uṠ(X, q) + λ1h+ λ2 (27)

Based on constraints (13) and (26) we can find expres-
sions for Lagrange multipliers λ1 and λ2:

λ1 = Γq
(1−q)

mes(Ω)
∫
Ω
pq−1h(x)dx−

∫
Ω
pq−1dx

∫
Ω
h(x)dx

mes(Ω)
∫
Ω
h(x)2dx−(

∫
Ω
h(x)dx)2

λ2 = Γq
(1−q)

∫
Ω
pq−1dx

∫
Ω
h2(x)dx−

∫
Ω
pq−1h(x)dx

∫
Ω
h(x)dx

mes(Ω)
∫
Ω
h(x)2dx−(

∫
Ω
h(x)dx)2

(28)
Equations in (28) are valid when denominator in both

fractions is not equal to zero. If we use the CBS in-
equality for f = h and g = 1 then the following in-
equality comes true

∣∣∣∣∫
Ω

hdx

∣∣∣∣2 ≤ mes(Ω)

∫
Ω

h2dx, (29)

This inequality becomes equality when h = const. It
means that all energy levels coincide. This case is sup-
posed to be degenerate and not considered here. Thus
the expression

mes(Ω)

∫
Ω

h2dx ̸=
(∫

Ω

hdx

)2

. (30)

is always true.
Result equation of dynamics can be obtained by sub-

stituting (16) and (28) into (27). It can be transformed
to the more general form:

ṗ = Γ
q

q − 1
(I −Ψ)pq−1, (31)

where I is an identity operator, Ψ is a linear integral
operator that is independent of p :

Ψ =
(1, ·)

mes(Ω)
+

h̃(h̃, ·)
∥h∥2 − 1

mes(Ω) (1, h)
2 , (32)

h̃ = h− 1
mes(Ω)

∫
Ω
hdx.

5.1 Equilibrium stability
Let us examine the equilibrium of obtained equation

(27). We use the same Lyapunov function V̇ as we have
used in previous section with only one constraint. For
two constraints the new expression for V̇ is

V̇ (p) =
Γq2

mes(Ω)(q − 1)2
(A−B) , (33)

where

A =

(
mes(Ω)

∫
Ω
hpq−1dx−

∫
Ω
hdx

∫
Ω (p

q−1)
2
dx

)2

mes(Ω)
∫
Ω
h2dx−(

∫
Ω
hdx)

2 ,

B =
(
mes(Ω)

∫
Ω

(
pq−1(t, x)

)2
dx−

(∫
Ω
pq−1(t, x)dx

)2)
We will prove that

V̇ (p) ≤ 0. (34)

Let us define a functional:
⟨·, ·⟩ : L2(Ω)× L2(Ω) → R, ∀f, g ∈ L2(Ω)

⟨f, g⟩ = mes(Ω)

∫
Ω

fgdx−
∫
Ω

fdx

∫
Ω

gdx. (35)

New functional has several useful properties (proof of
each property is provided in [Fradkov and Shalymov,
2015]):
1. Linearity for the first argument
∀f, g, h ∈ L2(Ω), ∀λ ∈ R
⟨λf + g, h⟩ = ⟨λf, h⟩+ ⟨g, h⟩.
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2. Symmetry
∀f, g ∈ L2(Ω) ⟨f, g⟩ = ⟨g, f⟩.
3. Positiveness and the condition of zero value
∀f ∈ L2(Ω) ⟨f, f⟩ ≥ 0,
⟨f, f⟩ = 0 ⇔ f = µ = const.
Let’s prove inequality (34) base on properties 1-3.
Obvious that for any f, g ∈ L2(Ω) and λ ∈ R it is

true that f − λg ∈ L2(Ω). This function has property
3: ⟨f − λg, f − λg⟩ ≥ 0. Using properties 1 and 2 we
get the quadratic inequality with respect to λ:

0 ≤ ⟨f − λg, f − λg⟩ = λ2⟨g, g⟩ − 2λ⟨f, g⟩+ ⟨f, f⟩.

This inequality holds for any real λ. Hence the dis-
criminant can not be positive.

D = 4⟨f, g⟩2 − 4⟨f, f⟩⟨g, g⟩.

Thus

⟨f, g⟩2 ≤ ⟨f, f⟩⟨g, g⟩. (36)

If the equality takes place in (36) then there exists a
unique solution λ ∈ R of an equation ⟨f − λg, ⟨f −
λg⟩ = 0. But then by property 3 we have ∃µ ∈ R : f−
λg = µ1.
Substituting f = pq−1, g = h to the inequality (36)

we get

(
mes(Ω)

∫
Ω

hpq−1dx−
∫
Ω

hdx

∫
Ω

pq−1dx

)2

≤(
mes(Ω)

∫
Ω

(
pq−1

)2
pdx−

(∫
Ω

pq−1dx

)2
)
×(

mes(Ω)

∫
Ω

h2pdx−
(∫

Ω

hdx

)2
)
.

Which implies the inequality (34).
Note that the equality (34) holds if and only if

∃λ, µ ∈ R : pq−1 = λh+ µ. (37)

According to the speed-gradient for H (16) the ex-
pression (27) can be rewritten for the case of equilib-
rium as

p(t, x)
q−1

=
Cλ1h(x)

Γ
+

Cλ2

Γ
, (38)

where C = (1−q)
q . It coincides with (37) for λ = λ1

C
Γ ,

µ = λ2
C
Γ where λ1 and λ2 are defined in (28). So there

is only one PDF p∗ for an equilibrium state.

5.2 Asymptotic convergence
We will prove asymptotic convergence similarly to the

case with one constraint.

Theorem 5.1. For all PDFs defined by equation (27)
it is true that p(t, x) → p∗ for t → ∞.

Proof. To use Barbalat’s lemma we have to check con-
ditions under which the function v̈ is bounded. Based
on the expression for v̇ in (33) and according to the
similar logic as it was used in Proposition 1 we can
conclude that v̈ is bounded for the compact carrier Ω.
According to Barbalat’s lemma it is true that

v̇ → 0, t → ∞. (39)

We introduce a scalar product as ⟨f, f⟩ =
mes(Ω)

∫
Ω
f2(x)dx − (

∫
Ω
f(x)dx)2. Having ∥f∥2 =

⟨f, f⟩ the expression (33) can be rewritten as

v̇ =
Γq2

mes(Ω)(q − 1)2

(
∥pq−1∥2 − (pq−1, h)2

∥h∥2

)
=

Γq2∥pq−1∥2

mes(Ω)(q − 1)2

(
1− (pq−1, h)2

∥pq−1∥2∥h∥2

)
. (40)

As v̇ → 0, consider the case when ∥pq−1∥2 → 0 first.
In CBS inequality

(∫
Ω

pq−1dx

)2

≤ mes(Ω)

∫
Ω

(
pq−1

)2
pdx

the equality takes place only when pq−1 = α. We have
previously demonstrated in (38) that the equality v̇ = 0
holds in the only one case when pq−1 = λh+µ, where
λ and µ are constants. Then h must be a constant since
the equality λh + µ = α. This case we assume to be
degenerate.
Given (39), (40) and ∥pq−1∥2 → 0 we have that
(pq−1,h)

2

∥pβ−1∥2∥h∥2 → 1. Which implies that p̂q−1 → ĥ,

where p̂q−1 and ĥ are normalized values for pq−1 and
h respectively. Thus p tends to the only one stationary
distribution p∗ since h does not depend on time.

6 Correspondence to the Tsallis distribution
Let us show that distribution p∗ corresponds to the

Tsallis distribution which is equilibrium distribution
for the Tsallis MaxEnt with a given set of constraints.
According to [Tsallis, 1988; Tsallis, Mendes and Plas-
tino, 1998] this distribution for continuous case can be
defined as:

pi =
1

Zq
(1− β(q − 1)Ei)

1
q−1 (41)
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where β is a special Lagrange multiplier and Zq =∫
Ω
(1− β(q − 1)h(x))

1
q−1 dx stands for the normal-

ization constant.
Taking into account eq. (27) for the case of stationary

distribution p∗ it is true that Γ q
q−1p

q−1+λ1h+λ2 = 0.
We get that

p(x, t) =

(
(λ1h(x) + λ2)

1− q

Γq

) 1
q−1

(42)

Let us substitute p(x, t) from (42) into (13). We get

(
1− q

Γq

) 1
q−1
∫
Ω

(λ1h(x) + λ2)
1

q−1 = 1

⇒
(
1− q

Γq

) 1
q−1

=
1∫

Ω
(λ1h(x) + λ2)

1
q−1

(43)

After substitution (43) into (42) we get that

p(x, t) =
(λ1h(x) + λ2)

1
q−1∫

Ω
(λ1h(x) + λ2)

1
q−1

(44)

Let us denote

λ1

λ2
= −β(q − 1) (45)

As λ1Ei + λ2 = λ2

(
1 + λ1

λ2
Ei

)
and taking into ac-

count Equation (45), the Equation (43) can be trans-
formed to

p(x, t) =
(1− β(q − 1))

1
q−1∫

Ω
(1− β(q − 1))

1
q−1

, (46)

where β = − 1
q−1

λ1

λ2
. We can see that (46) coincides

with the Tsallis distribution (41). As mentioned in
[Tsallis, Mendes and Plastino, 1998], β in Equation
(41) is not the Lagrange multiplier associated to the in-
ternal energy constraint (which is λ1 in our notation).
Following by notation of C. Tsallis (see Equation (10)
in [Tsallis, 1988]) we have that λ1 = −λ2β(q − 1). It
explains the variable substitution in (45).
It is evident that (46) satisfies the mass conservation

constraint (13). Let us check that the second constraint
for energy (26) is also satisfied.
Let us substitute p(x, t) from (42) into (26). Then we

get

(
1− q

Γq

) 1
q−1
∫
Ω

(λ1h(x) + λ2)
1

q−1 h(x)dx = E

⇒
(
1− q

Γq

) 1
q−1

=
E∫

Ω
(λ1h(x) + λ2)

1
q−1 h(x)dx

(47)

After substitution (47) into (42) we get that

p(x, t) = (λ1h(x) + λ2)
1

q−1 ×

×

(
E∫

Ω
(λ1h(x) + λ2)

1
q−1 h(x)dx

)

⇒ h(x)p(x, t) =
(λ1h(x) + λ2)

1
q−1 ∗ E∫

Ω
(λ1h(x) + λ2)

1
q−1 h(x)dx

⇒
∫
Ω

h(x)p(x, t)dx = E (48)

Which means that internal energy constraint (26) is also
true for (46).

7 Conclusion
The Tsallis entropy is widely used in communica-

tion and coding theory, signal processing, data mining
and many other areas [Tsallis, 2016]. Stationary states
which maximizes the Tsallis entropy are already well
investigated for the discrete case [Fradkov and Shaly-
mov, 2015]. The MaxEnt principle defines the asymp-
totic behavior of the system, but does not answer for the
question about how the system moves to this asymp-
totic behavior.
In this paper a non-stationary states of processes that

follow the MaxEnt principle for the continuous form
of the Tsallis entropy are investigated. The equations
(19), (20), (27) and (31) which describe dynamics of
PDF for the system that tends to the state with maxi-
mum Tsallis entropy have been derived. Systems with
discrete probability distribution and continuous PDFs
are considered under mass conservation and energy
conservation constraints. It is shown that the limit PDF
p∗ is unique and corresponds to the Tsallis distribution.
The convergence of PDFs with dynamics described by
equations (19) and (27) to PDF p∗ which corresponds
to the state with maximum value of the Tsallis entropy
has been proved.
From the physics view point the new derived equa-

tions (19), (20), (27) and (31) allow us to predict the be-
havior of complex non-stationary systems which tend
to maximize its continuous form of the Tsallis entropy.
It may find further applications in statistical physics
and thermodynamics, also in the field of communica-
tion and signal processing.
The key point of proposed approach is using the SG-

method with the goal function chosen as a continuous
form of the Tsallis entropy. The SG-principle is origi-
nated from the control theory and it generates equations
for the transient (non-stationary) states of the system
operation which help to track how the system evolves
to the steady-state.
More general forms of relative entropies and diver-

gences such as CR entropy or Csiszár–Morimoto con-
ditional entropies (f-divergencies) [Morimoto, 1963]
can also be considered from the SG-principle perspec-
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tive. Investigation of dynamics for these entropies
seems to be promising for further investigations.
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