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Abstract 

The paper presents a detailed analysis of the nonlinear vibration response of a pre-stretched hyperelastic membrane subjected to finite deformations under the action of a time-varying lateral pressure. The membrane material is assumed to be isotropic, homogeneous and neo-Hookean. First the exact solution of the membrane under a uniform radial stretch is obtained. Then the equations of motion of the pre-stretched membrane are derived. From the linearized equations, the natural frequencies and mode shapes of the membrane are obtained analytically. Then the natural modes are used to approximate the nonlinear deformation field using the Galerkin method. Several reduced order models are tested and the results compared with the results evaluated for the same membrane using a nonlinear finite element formulation. Excellent agreement is observed. The results show the strong influence of the stretching ratio on the linear and nonlinear oscillations of the membrane.
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1
Introduction

Membranes have received considerable attention recently due to their applications in several engineering areas, including space applications (Jenkins, 2001), actuators and sensors (Kofod, 2001); robotics (Pei et. al, 2004), bio-engineering devices (Gonçalves et al., 2003, Goulbourne et al., 2004) and civil engineering structures (Hsieh and Plaut, 1990). Also membranes play a significant role in nature due its high load-carrying capacity per unit weight. The analysis of membrane mechanics is an important topic in nonlinear continuum mechanics. In particular the study of hyperelastic membranes under finite deformations, such as elastomeric membranes and most biological tissues, is a rather challenging subject and, in such cases, elasticity in the fully non-linear range must be employed. The pioneering works of Rivlin (1948) and Green and Adkins (1960) on non-linear elasticity set up the basis for the analysis of structures under large deformations. Strain-invariant constitutive models are usually used to describe the behavior of hyperelastic materials; the simplest constitutive model is the neo-Hookean model, which can be viewed as a simplification of the Mooney-Rivlin law.
The linear vibration analysis of membranes (drumheads) is a classical problem in mechanics, however several aspects of this problem are still object of research nowadays (Wang, 2003; Buchanan, 2005). The non-linear small-amplitude vibrations of elastic membranes have also been investigated for many years (Akkas, 1978; Verron et. al., 1999). However, the analysis of the linear and particularly the nonlinear vibrations of hyperelastic membranes are rare in literature (Akyüz and Ertepinar, 1999; Tüzel and Erbay, 2004; Mockensturm and Goulbourne, 2006). With regard to the nonlinear vibrations of an initially stretched hyperelastic membrane under finite deformations, to the authors’ knowledge, no study has been reported until now.
A review of the literature on the static and dynamic behavior of membranes, both theoretical and experimental, can be found in Jenkins and Leonard (1991), Jenkins (2001) and Jenkins and Korde (2006).
So, the aim of the present work is to study the linear and nonlinear vibrations of a pre-stretched circular hyperelastic membrane. The membrane material is assumed to be isotropic and incompressible and its behavior is described by the neo-Hookean constitutive law. These hypotheses have been widely used to describe the behavior of most elastomers (Pamplona and Bevilacqua, 1992; Pamplona et al. 2006).
A variational formulation, considering finite deformations, is used to derive the equilibrium equations of the membrane under a uniform radial stretch and the equations of motion of the pre-stretched membrane. The linear and non-linear vibrations are analyzed and the influence of the pre-stretch on these results is evaluated. The problem is also analyzed using the finite element software Abaqus 6.5® (Hibbitt et al, 2001).
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Problem Formulation
2.1
Static Analysis
Consider a circular hyperelastic membrane of undeformed radius Ro, thickness H and mass density . The membrane is first uniformly stretched in radial direction, reaching a final radius Rf, and then fixed along the edge. The deformed and undeformed geometries, co-ordinate system and associated static and dynamic displacement components are shown in Figure 1. Assuming the complete recoverability after deformation, the strain energy density depends only on the final state of strain and in no way on the loading history. Thus given an undeformed reference state, the strain is characterized by the principal stretches (1, (2 and (3 or, alternatively, by the strain invariants I1, I2 and I3, that is: 
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The three strain invariants of the deformation field can be written in terms of the principal stretches (i (i=1, 2, 3) as:
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	(a) Undeformed
	(b) Deformed


Figure 1 – Deformed and undeformed configurations of the stretched membrane
The membrane material is homogeneous, isotropic and incompressible (I3=1). There are several constitutive laws in literature particularly adapted to the representation of elastomers. Considering a neo-Hookean material, the energy density function can be described as:
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where C1 a material parameter and I1 is the first strain invariant of the deformation field.

For a uniformly stretched membrane in the radial direction, the radial co-ordinate function - ro(ρ) – must satisfy the following non-linear differential equilibrium equation:
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and the following boundary condition
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where  is the radial co-ordinate of the undeformed membrane, ro is the radial co-ordinate in the deformed state and 
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The exact solution of equation (4), satisfying the boundary condition (5) is:
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where 
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. The static transversal and circumferential displacement components, z0 and β0, are zero.

So, the principal strains and stretches are given, respectively, by:
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2.2
Dynamic Analysis
Now the stretched membrane is subjected to a transversal time-varying pressure and its non-linear vibrations are analyzed. So the total displacement field with respect to the undeformed configuration is given by
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where w(,  t), u(,  t) e v(,  t) are the perturbation components in the radial, transversal and circumferencial directions, respectively and ro(), zo() and o() describes the initial deformed static state.
The non-linear equations of motion are given by:
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where 
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 is the damping ratio and P(t) is the uniformly distributed lateral pressure given by
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where Po is the excitation magnitude and  is the excitation frequency.
The numerical results show that in the transversal vibrations the in plane components w and v are negligible compared with the transversal displacement u.

2.2.1  Linear Free Vibration Analysis

Taking into account equation (6), and ignoring the damping and external load, one obtains the following linearized equation of motion in the transversal direction:
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which is similar to the classical wave equation if:
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The free vibration modes are obtained by solving equation (16) together with the relevant boundary and continuity conditions. They are:
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where Amn is the modal amplitude; n is the number of waves of the vibration mode in the circumferential direction, Jn is the Bessel function of order n; m=1,2,3,...,∞ ; mn are the zeros of the Bessel function Jn, and ωmn is the natural (circular) frequency of the mn mode. The natural frequencies of the stretched hyperelastic membrane are given by
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2.2.2

  Nonlinear Analysis
To obtain the nonlinear response of the stretched membrane, the transversal displacement field is approximated by a sum of MxK natural modes, that is:
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where Amn(t) is the time-dependent modal amplitudes. By applying the Galerkin method the nonlinear partial differential equation of motion in the transversal direction – Eq. (13)- is transformed into a system of MxK ordinary differential equations of motion in time domain.
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Numerical Results
For the numerical analysis, a circular membrane with initial radius Ro = 1 m, thickness H = 0.001m and mass density  = 2200 Kg/m3 is considered. The constant of the neo-Hookean, material is taken as C1 = 0.17 MPa (Selvadurai, 2006). This membrane was also analyzed using the finite element software Abaqus 6.5®, using the membrane elements M3D4 and M3D3 and a mesh of 9789 elements. The vibration modes and frequencies were computed for increasing values of the stretching ratio δ. The analytical (AN) and finite element (FEM) results for the natural frequencies are compared in Table I. Figure 2 shows the variation of the natural frequency for  m = 1 and n = 0 as a function of the stretching ratio δ. The frequency increases quickly from zero as δ increases from 1 (unstretched configuration) and tend to a constant value for δ>2. All frequencies display similar behavior.
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Figure 2 – Natural frequency versus stretching ratio.

	Table I – Vibration Frequencies (rad/s)

	m
	n
	δ= 1.10
	δ = 1.50
	δ = 2.0

	
	
	FEM
	AN
	FEM
	AN
	FEM
	AN

	1
	0
	19.729
	19.729
	28.551
	28.551
	29.456
	29.663

	1
	1
	31.441
	31.435
	45.503
	45.498
	47.268
	47.262

	1
	2
	42.141
	42.235
	60.977
	60.978
	63.359
	63.341
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	(a) n = 0; m = 1
	(b) n = 1; m = 1
	(c) n = 2; m = 1


Figure 3 – Selected numerical vibration modes of the circular membrane.
The shape of the three selected modes is illustrated in Figure 3. The linear frequencies are independent of the initial membrane thickness H.

First the non-linear free undamped vibrations (P(t) = 0; ( = 0) associated with the lowest natural frequency (n = 0; m = 1), which corresponds to the first axisymmetric mode, are considered. For this, the transversal displacement is approximated by expansion (20) with K = 0 and an increasing number of radial modes (M = 1, 2 and 3). Then, the equations of motion are solved using continuation techniques and the frequency-amplitude relation is obtained. Figure 4 shows the results for a stretched membrane with δ = 1.10. The results show that a reduced model with only one degree of freedom (expansion 1, M=1) is sufficient to obtain the correct response up to very large deflections. The amplitudes of the subsequent modes (A2 and A3) are rather small when compared to A1. For small vibration amplitudes the response shows a strong increase in the natural frequency. As the vibration amplitude increases the hardening effect decreases and the curve veers upward tending to a constant frequency value for large vibration amplitudes.
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	(a) A1
	(b) A2
	(c) A3


Figure 4 – Frequency-amplitude relation (Rf = 1.10).
To evaluate the accuracy of the reduced order models, the amplitude-frequency relation was obtained using the finite element software Abaqus. For this, a mesh of 576 elements is used and the response is obtained for a point on the undeformed membrane with co-ordinates (0.5, 0). A total of 1731 nonlinear equations of motion are numerically integrated and the frequency-amplitude relation is obtained using the methodology proposed by Nandakumar e Chatterjee (2005). The FE results are compared with the results of the reduced order models obtained for the same set of co-ordinates in Figure 5. An excellent agreement between all the models is observed.
Consecutively, the forced vibrations of the membrane are obtained using both the FE method and the modal solutions considering an amplitude of excitation Po = 1 and an excitation frequency  = 0.75 The results are presented in Figure 6. Again, a good agreement is observed.
Since the one DOF model compare well with the more refined modal solutions and with the FE results, this model was selected to perform a parametric analysis and study the influence of the problem parameters on the nonlinear response. Again, all results are obtained by continuation algorithms.
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Figure 5 – Frequency-amplitude relation (δ = 1.10) 
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	Figure 6 – Nonlinear resonance curve (δ = 1.10).


Figure 7 shows the resonance curves of the pre-stretched membrane for three different stretching ratios: δ= 1.10, 1.50 and 2.00. As the value of δ increases the non-linearity decreases and for δ=2.0 the response is practically linear.

Figure 8 shows, for selected values of the excitation frequency and δ=1.10, the bifurcation diagrams as a function of the forcing amplitude, P0.

In Figures 7 and 8, dashed lines represent unstable responses, while continuous lines represent stable responses.
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	(a) δ = 1.10
	(b) δ = 1.50
	(c) δ = 2.0


Figure 7 – Resonance curves for increasing pre-stretching ratios. Vibration amplitude A1 as a function of the excitation frequency Ω (Po = 1 ; c = 0.05).
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	(a) = 21 ; c = 0.05; Rf = 1.10
	(b) = 29 ; c = 0.05; Rf = 1.50
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	(b) = 29.8 ; c = 0.1; Rf = 2.0


Figure 8 – Bifurcation diagrams for selected values of the excitation frequency. Vibration amplitude A1 as a function of the forcing amplitude Po
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Conclusions
The mathematical modeling for the nonlinear vibration analysis of a pre-stretched hyperelastic membrane under finite deformations is presented in this paper. The membrane material is considered as homogeneous, isotropic and neo-Hookean. First the exact solution of the stretched membrane is obtained showing that all relevant quantities are a function of the material constant and the stretching ratio only. Then, the equations of motion of the stretched membrane are obtained. By solving analytically the linearized equations of motion, the vibration modes and frequencies of the hyperelastic membrane are obtained and these normal modes are used, together with the Galerkin method, to obtain an approximation of the nonlinear dynamic response. The same problem is also analyzed using the finite element software Abaqus®. The results compare well with those obtained by the reduced order models up to large vibration amplitudes. The results highlight the influence of the stretching ratio (deformed radius/ undeformed radius) on the vibration frequencies, nonlinear frequency-amplitude relation and bifurcation diagrams. It is shown that a lightly stretched membrane displays a highly nonlinear response and that the nonlinearity decreases as the stretching ratio increases and the response becomes practically linear for a deformed radius of twice the initial value.
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